

ROLLING STOCK

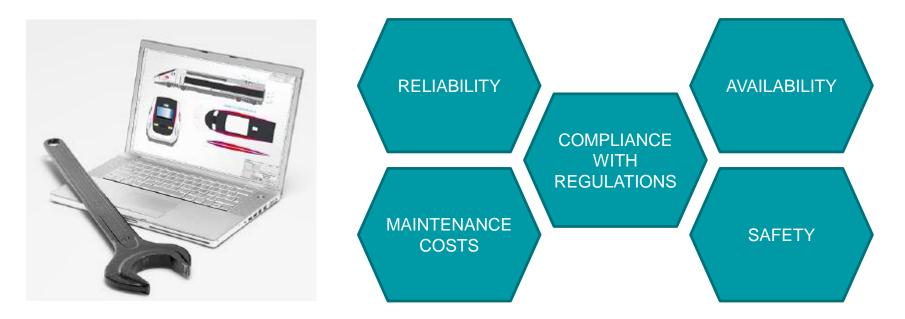
PREDICTIVE MAINTENANCE

HÉLOÏSE NONNE

9 BILLION PEOPLE ON EARTH

2 OUT OF 3 LIVE IN URBAN AREAS

12 MILLION INHABITANTS IN PARIS AREA

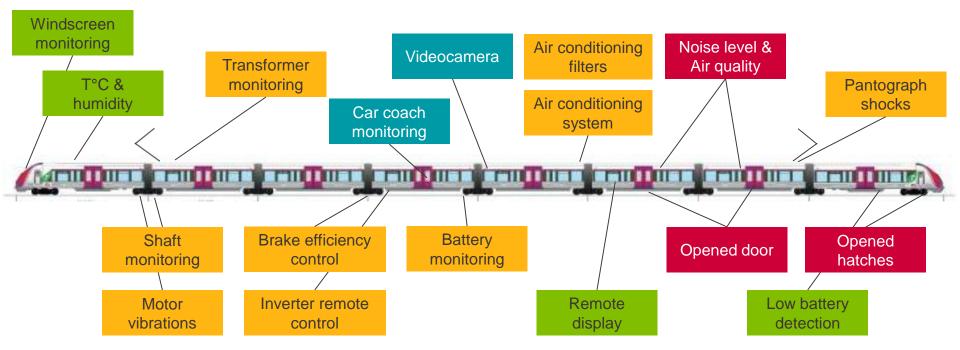

PARIS AREA DAILY

- 14 LINES
- 3,2 MILLION TRIPS
- > 6200 TRAINS
- 1280 KM RAILWAY
- 385 STATIONS
- 26000 AGENTS

ROLLING STOCK MAINTENANCE

WHAT IS AT STAKE?

THE NEW GENERATION DIGITAL NATIVES



NAT: BOMBARDIER'S TRAINS

180 TRAINS
1 COMPUTER IN EACH VEHICLE
40,000 DIFFERENT VARIABLES
70,000 LINES / MONTH / RAME + CBM (PHYSICAL PARAMETERS)
COMMUNICATION EVERY 30 MINUTES

WHAT KIND OF DATA?

IMPROVING MAINTENANCE WITH REMOTE DIAGNOSTIC

PROACTIVE VALUE + Repair before faults have an impact CONNECTED + Prioritize corrective maintenance + Repair after failure Optimized planning + Diagnostic during **CLASSIC** operation + Enhanced planning + Repair after failure @) **Diagnostic at workshop** 1 0 000 110 1011 1 00 000 + Lowest engineering 01 0111 1 111 1 1 111 11 111 1 effort ANALYTI

KEY BENEFITS FROM REMOTE DIAGNOSTIC

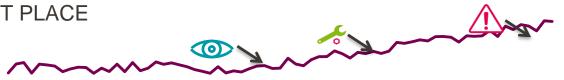
→ FLEET OPERATION AND SUPERVISION

 \rightarrow INCREASED RELIABILITY AND AVAILABILITY

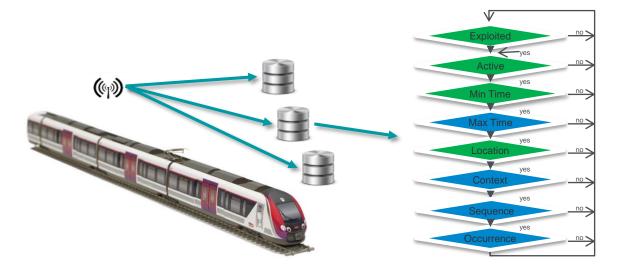
 \rightarrow MAKING THE RIGHT CHOICE

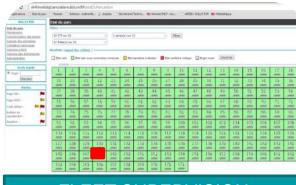
 \rightarrow MAINTENANCE OPTIMIZATION

→ ONLY DO WHAT IS NECESSARY


 \rightarrow SEND A TRAIN TO THE RIGHT PLACE

→QUALITY CHECK


→ REDUCED COSTS


CONDITION BASED VERSUS SYSTEMATIC MAINTENANCE

REMOTE DIAGNOSTIC IN PRODUCTION

FLEET SUPERVISION

MACHINE LEARNING FOR PREDICTIVE MAINTENANCE

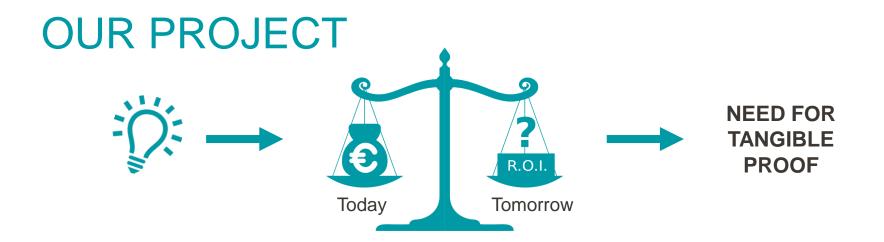
WHY?

PREDICTING A FAILURE 30 MINUTES BEFORE MEANS:

- + Avoiding impact on hundreds of travellers
- + Better fleet management

USE MACHINE LEARNING TO REINFORCE ENGINEERING

- + Go beyond engineers pre-conceived ideas (which are valuable!)
- + Analyze weak signals
- + Produce automatic rules to complement experts' rules
- + Learn faster about new rolling stock aging rules



CAcGAgAAAABDBAAAAAD4/wEAAAAAAAAAQwC CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA, CAcDBgAAAAAQhQAAAAD7/0kAAAAAAAAAEIUA,

BE ITERATIVE, PRAGMATIC AND STICK TO EXISTING PROCESSES

- 1. POC: 10 weeks
- 2. PILOT: 3 months
- 3. TEST: 6 months
- 4. CHANGE MANAGEMENT: longer, lean in existing processes and evolve

CHALLENGES

FAILURES ARE VERY RARE!

NEW MATERIAL: A LIMITED HISTORY

CHALLENGES YOU DON'T OFTEN ENCOUNTER

A young company: Zalando 2008

An « old » company: Google 1998

CHALLENGES YOU DON'T OFTEN ENCOUNTER

A young company: Zalando 2008

An « old » company: Google 1998

SNCF

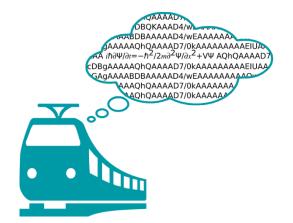
1938

CHALLENGES

DATA QUALITY

DATA IS GENERATED THROUGH VARIOUS AND COMPLEX PROCESSES

MANY HETEROGENEOUS SOURCES


GETTING A SOURCE OF DATA IS SOMETIMES DIFFICULT (CONTRACTS, REGULATIONS, SPECIFIC IS)

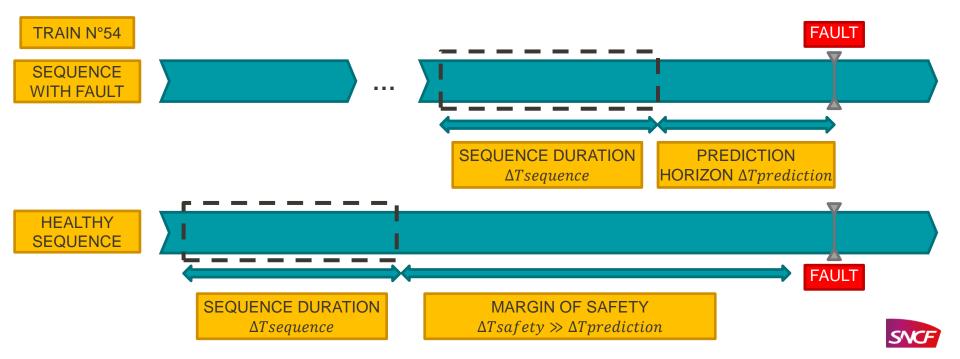
AN EXAMPLE

TRAINS DREAM WHEN THEY SLEEP

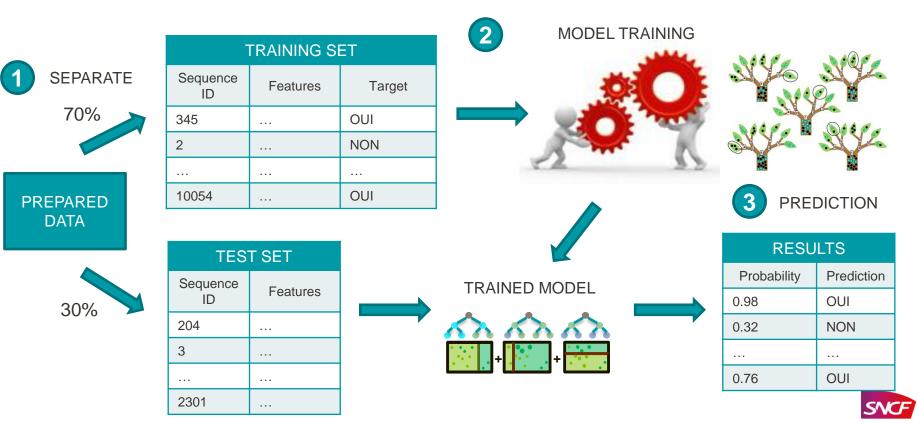
USE OPERATION TIMETABLES

FEATURE ENGINEERING: CONSTRUCTING FEATURES

SEQUENCE	CODE	START	END
1	8301	03/05/14 17:18:32	03/05/14 17:19:04
1	20003	03/05/14 17:18:54	03/05/14 17:18:57
1	8003	03/05/14 17:19:32	03/05/14 17:21:12
23003	10054	04/05/14 10:32:10	03/05/14 10:33:17



CODE		8301					
SEQUENCE	OCCU- RENCES	FRE- QUENCY	MEAN DURATION	OCCU- RENCES	FRE- QUENCY	MEAN DURATION	
1	304	5.3	2.4	3	99.3	132.1	
2	0	NA	NA	0	NA	NA	
3	32	10.1	0.45	0	NA	NA	
23003	5	1.3	143.1	1	NA	12.6	


FEATURE ENGINEERING: CONSTRUCTING FEATURES

ONE LINE REPRESENTS THE TIME AGGREGATION ON DURATION $\Delta T sequence = 4H$

 $\Delta T prediction = 30 min, \Delta T safety = 20 H$

MODELING STEPS

FROM POC TO PRODUCTION

YOU NEED THING WORKING NEATLY IN PRODUCTION

YOUR DATA SCIENTISTS WORK LIKE THAT

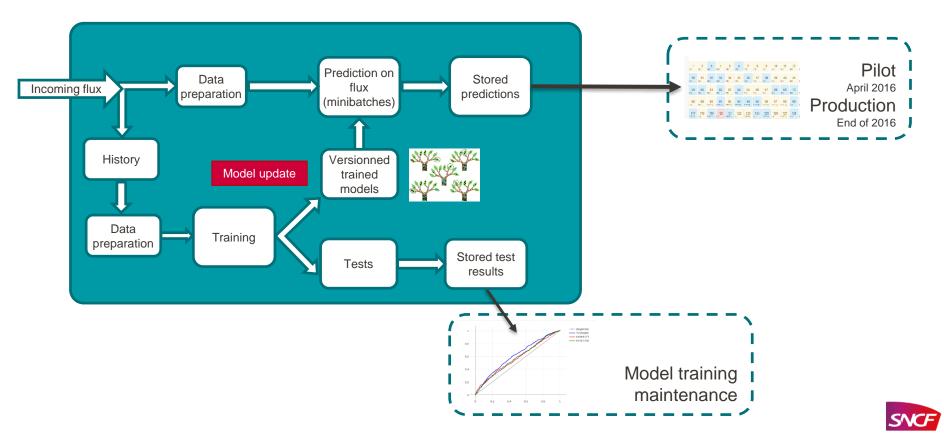
FROM POC TO PRODUCTION

FROM PYTHON & SCIKIT LEARN TO SPARK AND MLLIB

DISTRIBUTING COMPUTATION PARTITIONING OVER TRAINS WRITE EFFICIENT SPARK CODE TRANSLATING A POC

FROM POC TO PRODUCTION

HOW TO COMPARE POC RESULTS WITH PILOT?


+DIFFERENCES IN IMPLEMENTATIONS (< IS NOT ≤) +COMPARE PREDICTIONS MADE WITH TWO RANDOM FORESTS?

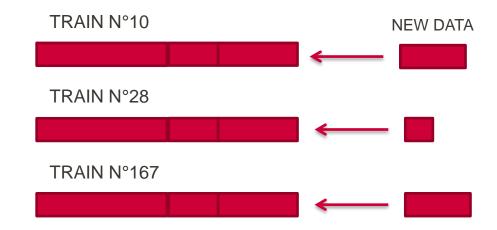
STACK

MODELS IN PRODUCTION

CONSTRUCTION OF SEQUENCES

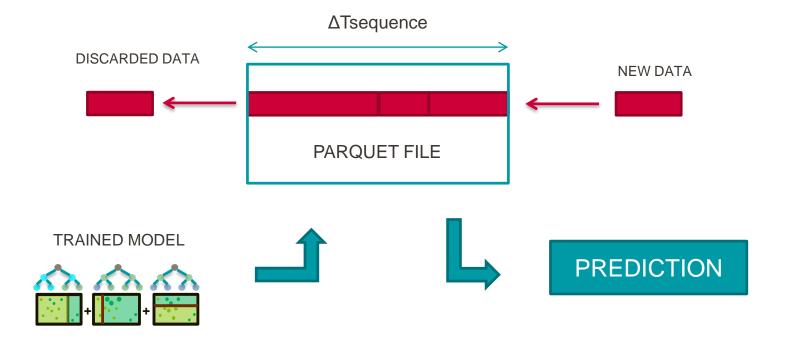
For each train, every 30 minutes

- a new file comes in
- filter data generated outside of operations (sleeping trains)

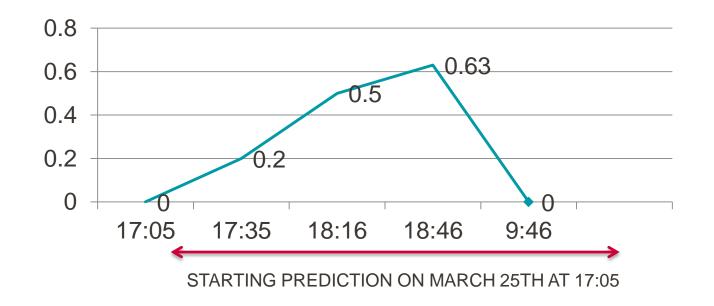


Entire sequence of train data

CONSTRUCTION OF SEQUENCES


New 'in operation' sequences are stacked together in parquet format

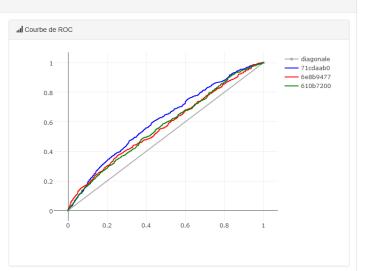
CONSTRUCTION OF SEQUENCES


For 'real time' predictions, keep a constant

PREDICTION EVOLUTION

EXAMPLE

PREDICTING FAILURE ON DOOR ENGINE FOR TRAIN N° 124



Entraînement

Liste des modèles générés

	Identifiant	Actif?	▲ Date	Séquence non défaillance (dT0)	Horizon de prédiction (dT1)	Nombre de points	Aire sous la courbe	Trains	Détails	Lift
	0f2c6cbf	×	25/03/2016 12:42	4h	30min	26867	0.608	Q	۹	۹
•	610b7200	×	25/03/2016 17:24	8h	1h	26346	0.570	۹	۹	۹
•	71cdaab0	×	04/04/2016 16:08	4h	30min	26867	0.608	۹	۹	۹
	60093dbc	×	04/04/2016 16:25	4h	30min	26868	0.625	Q	۹	۹
	276d0866	×	05/04/2016 15:47	4h	30min	26868	0.625	۹	۹	۹
	ee175058	×	06/04/2016 11:52	4h	30min	26868	0.582	۹	۹	۹
	3b255900	×	13/04/2016 10:41	4h	30min	26868	0.625	Q	۹	۹
	8691e570	×	13/04/2016 14:26	4h	30min	26868	0.625	۹	۹	۹
	7abdfeb8	×	13/04/2016 14:35	4h	30min	26868	0.625	۹	۹	۹
•	6e8b9477	×	25/04/2016 22:29	4h	30min	18514	0.570	۹	۹	۹
	97dd718f	×	29/04/2016 15:51	4h	30min	26604	0.603	۹	۹	۹
	883c0108	×	12/05/2016 17:51	4h	30min	25927	0.511	۹	۹	۹
	76ac6300	×	13/05/2016 10:24	4h	30min	18514	0.570	۹	۹	۹
	7c3f990c	×	13/05/2016	4h	30min	18514	0.570	۹	Q	Q

 \square

DEMO

Prédictions

<

Dernière mise à jour : 25/05/2016 à 09:36

Warning level : 0,5

🗧 Lignes : 🛛 🗸 🗸

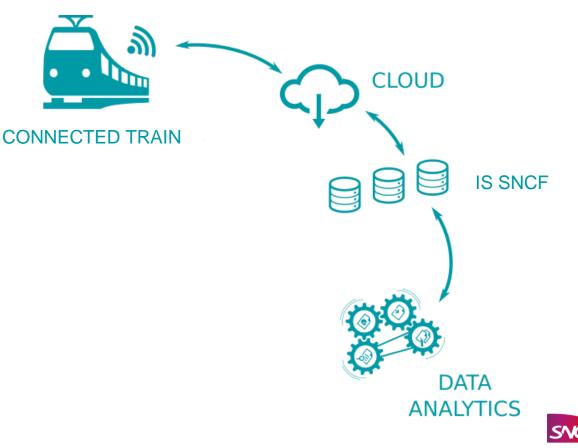
																ß												
<mark>1</mark> н/к	<mark>2</mark> н/к	3 н/к	4 н/к	<mark>5</mark> н/к	<mark>6</mark> н/к	7 н/к	<mark>8</mark> н/к	9 н/к	10 н/к	11 н/к	<mark>12</mark> н/к	13 н/к	14 н/к	15 н/к	16 н/к	17 н/к	18 н/к	19 н/к	20 н/к	21 н/к	<mark>22</mark> н/к	23 н/к	24 н/к	25 н/к	<mark>26</mark> н/к	27 н/к	28 н/к	29 _{H/K}
<mark>30</mark> н/к	<mark>31</mark> н/к	<mark>32</mark> н/к	33 н/к	<mark>34</mark> н/к	<mark>35</mark> н/к	<mark>36</mark> н/к	37 н/к	<mark>38</mark> н/к	<mark>39</mark> н/к	40 _{H/K}	41 н/к	42 H/K	43 н/к	44 H/K	45 н/к	46 н/к	47 H/K	48 н/к	49 н/к	50 H/K	51 н/к	<mark>52</mark> н/к	53 н/к	54 н/к	55 н/к	<mark>56</mark> н/к	<mark>57</mark> н/к	58 H/K
59 _{H/K}	60 н/к	<mark>61</mark> н/к	<mark>62</mark> н/к	63 H/K	<mark>64</mark> н/к	<mark>65</mark> н/к	66 н/к	67 _{H/K}	68 H/K	69 _{H/K}	70 _{H/K}	71 H/K	72 H/K	73 _{H/K}	74 н/к	75 _{H/K}	76 _{H/K}	77 н/к	78 ⊔/J	79 L/J	80 L/J	<mark>81</mark> ⊔∕J	82 H/K	83 H/K	84 H/K	85 H/K	86 L/J	87
88 L/J	<mark>89</mark> н/к	90 E/P/T4	91 E/P/T4	92 E/P/T4	93 E/P/T4	94 E/P/T4	95 E/P/T4	96 E/P/T4	97 E/P/T4	98 E/P/T4	99	100 E/P/T4	101 L/J	102 E/P/T4	103 L/J	104	105 E/P/T4	106 ⊔/J	107 E/P/T4	108 L/J	109 E/P/T4	110 L/J	111 E/P/T4	112	113 E/P/T4	114	115 E/P/T4	116
117 E/P/T4	118 L/J	119 E/P/T4	120 ⊔∕յ	121 E/P/T4	122	123 E/P/T4	124 ⊔/J	125 E/P/T4	126 L/J	127 E/P/T4	128	129 E/P/T4	130 L/J	131 E/P/T4	132 _{L/J}	133 E/P/T4	134 L/J	135 E/P/T4	136 ⊔/J	137 E/P/T4	138 E/P/T4	139 E/P/T4	140 E/P/T4	141 E/P/T4	142 E/P/T4	143 E/P/T4	144 _{L/J}	145 E/P/T4
_ 146 ∟/J	147	148 _{L/J}	149 ⊔∕յ	150	151 _{L/J}	152 _{L/J}	153 _{L/J}	154 ⊔∕J	155 L/J	156 L/J	157 ⊔/J	158 _{L/J}	159 _{L/J}	160	161 ⊔/J	162	163	164 _{L/J}	165 ⊔/J	166	167	168 L/J	169 L/J	170	171	172 L/J	173 E/P/T4	174 E/P/T4
175 E/P/T4	176 E/P/T4	177 E/P/T4	178 E/P/T4	179 E/P/T4	<mark>180</mark> н/к	<mark>181</mark> н/к	<mark>182</mark> н/к																					

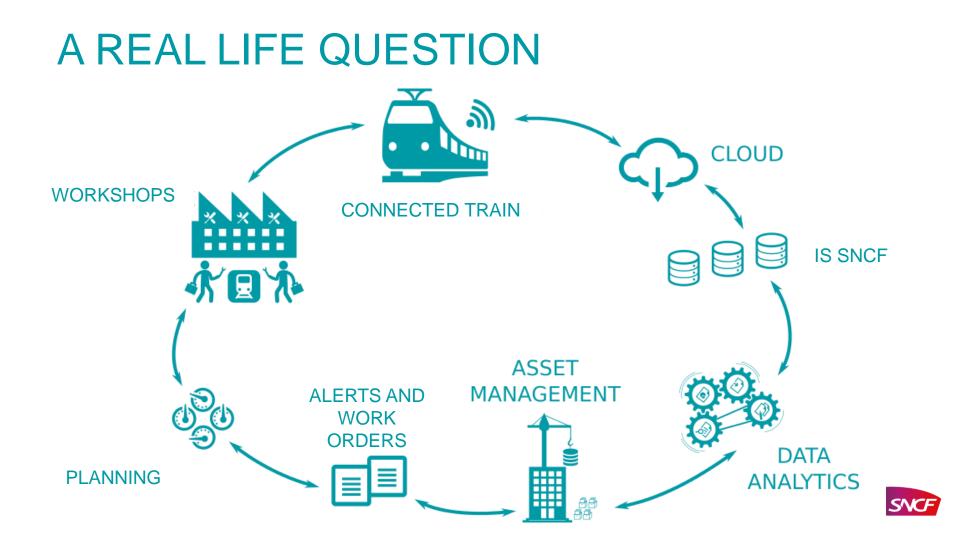
Rame n°5.

Prédictions

Dern	ière mise	e à jour :	25/05/2				
Warni	ng level :	0		😫 Dang	jer level :	0,5	
<mark>1</mark> н/к	2 H/K	<mark>3</mark> н/к	<mark>4</mark> н/к		<mark>6</mark> н/к	7 H/K	H/k
30 н/к	<mark>31</mark> н/к				<mark>35</mark> н/к		H/k
59 н/к	<mark>60</mark> н/к		<mark>62</mark> н/к		<mark>64</mark> н/к	<mark>65</mark> н/к	H/k
88 L/J	<mark>89</mark> н/к				93 E/P/T4		E/F
	118				122		1 L/J
	147 L/J						1 L/J
175 E/P/T4	176 E/P/T4					<mark>181</mark> н/к	1 H/k

	Probabilité de panne à	
Fonction	30min	
0 : Fonction manquante	0.04%	
3 : Caisse / Chaudron	0.01%	
C : Habillage de caisse	0.02%	
) : Aménagement intérieur	0.13%	
E : Organe de roulement	0.05%	K
F : Appareil de puissance / Chaîne de traction	0.48%	
G : Contrôle commande de la chaîne traction / freinage	0.33%	K
H : Équipements auxiliaires	0.37%	
: Équipements de sécurité et de surveillance	12.09%	J
K : Éclairage	0.24%	1
. : Climatisation	0.55%	F
M : Autres équipements	0.09%	1
N : Porte	1.63%	P
P : Système d'Information Voyageurs et d'aide à l'exploitation	0.20%	1
2 : Équipements hydrauliques et pneumatiques	0.06%	J
R : Frein (système de frein / ensemble organes)	0.15%	
S : Liaisons inter caisse	0.01%	

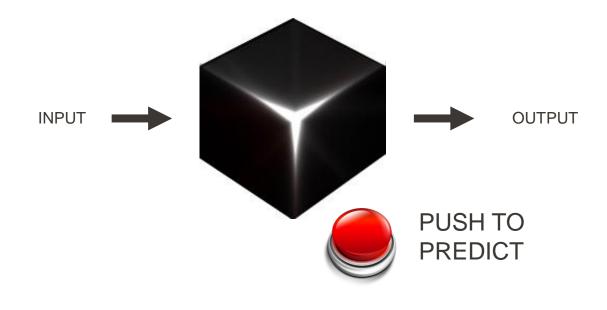

		<mark>26</mark> н/к		
		55 н/к		
		<mark>84</mark> н/к		
		113 E/P/T4		
		142 E/P/T4		
		171	173 E/P/T4	


×

NOW THE REAL LIFE QUESTIONS

A REAL LIFE QUESTION

A REAL LIFE QUESTION


TAKING DECISIONS BASED ON THE PREDICTIONS

+ SYSTEM MUST BE RELIABLE AND CONTROLLED

- + DEAL WITH FALSE POSITIVES / NEGATIVES: CHOOSE ALERT THRESHOLDS
- + WHAT DECISION TO TAKE?
- + YOU NEED TO CONVINCE EXPERTS

MACHINE LEARNING OR THE BLACKBOX NIGHTMARE

TRANSLATE RANDOM FORESTS KNOWLEDGE INTO USEFUL KNOWLEDGE

WHAT WE HAVE TO DO NOW

+ FIND THE BEST PARAMETERS

+ Δ Tsequence, Δ Tprediction

+ NUMBER OF TREES, DEPTHS, ETC.

+ CHOOSE ALERT THRESHOLDS AS A FUNCTION OF:

+ MONITORED SYSTEM

+ CRITICITY (TYPE OF FAILURE / EXTERNAL CONDITIONS)

AND THE BIG QUESTION

HOW TO MAINTAIN THE SYSTEM

+ BETTER HANDLING OF EVOLVING DATA
+ ENSURE THE STABILITY OF AN AI IN PRODUCTION
+ WHAT IS A UNIT TEST FOR AN AI?
+ PROTECT AGAINST MALICIOUS ATTACKS

LESSONS LEARNED

THINK CLOSE TO PRODUCTION AS SOON AS POSSIBLE

Ask your datascientists (when possible) to:

+Parallelize when desining the data preparation code

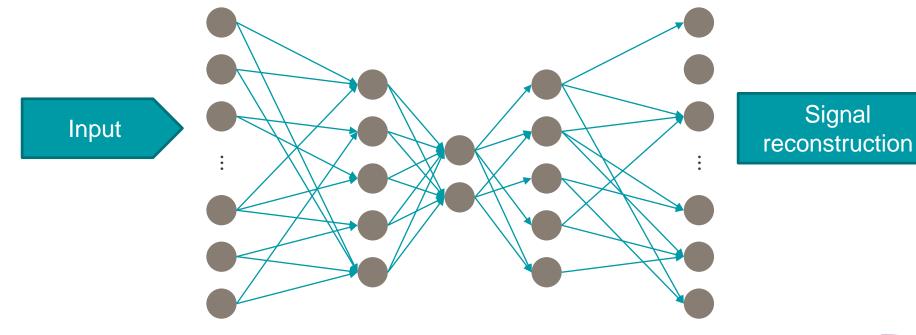
- +Avoid serial code and design classes
- +Design unit tests even for POC projects

PILOT PROJECTS

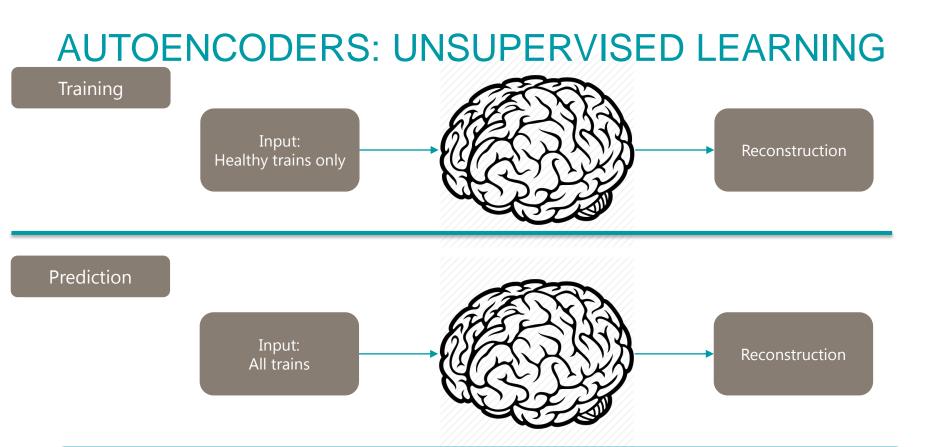
IT MAY BE BETTER TO USE THE POC PROTOTYPE TO TEST REAL CONDITIONS

- + You WILL have surprises (bad and good) in real conditions
- + Avoid redevelopment before tests (you may need to change your architecture)
- + Easier and cost efficient to choose (at least some of) the models parameters during the tests

IMPROVING CONTINUOUSLY


RANDOM FORESTS ARE NICE BUT

+SINCE FAILURES ARE SO RARE +SINCE SIGNAL IS WEAK AND SPARSE


WHY NOT +USE UNSUPERVISED LEARNING? +USE NEURAL NETWORKS?

USING NEURAL NETWORKS: AUTOENCODERS

Reconstruction is good -> no failure Reconstruction is bad -> probable failue

THAT WORKS VERY WELL

A LARGE IMPROVEMENT IN PREDICTION PERFORMANCES

BUT...

BIG PROBLEM

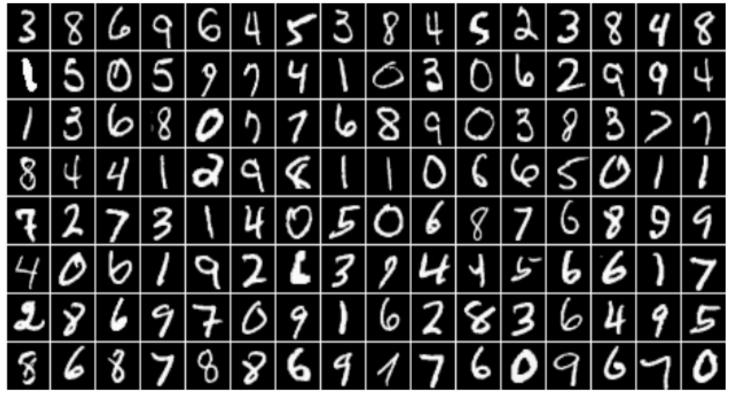
VERY UNSTABLE IN PRODUCTION

DATA GENERATION CHANGES WITH TIME

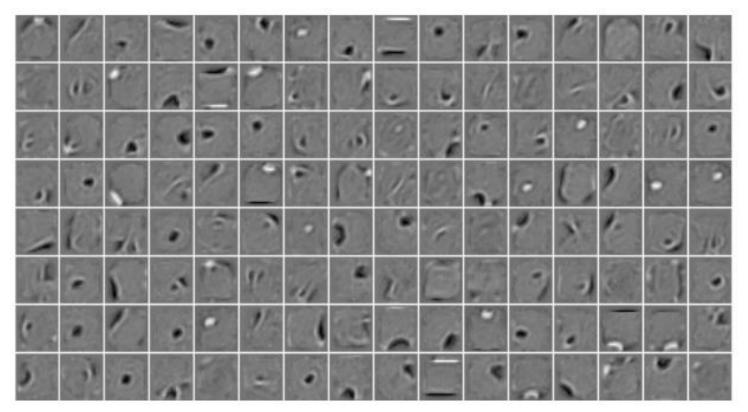
EVEN MORE PARAMETERS TO TUNE

+ARCHITECTURE +NUMBER OF LAYERS +NUMBER OF NEURONS IN EACH LAYER +INITIALIZATION **+**ACTIVATION FUNCTION +LEARNING ALGORITHM +NUMBER OF PASSES OVER TRAINING DATA +DROPOUT

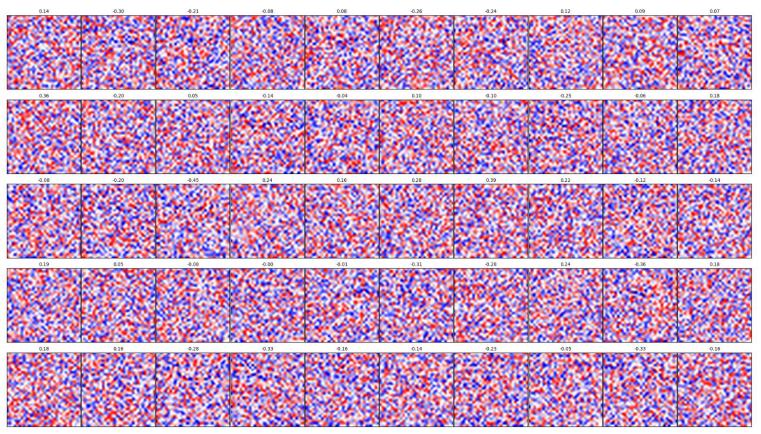
ANOTHER PROBLEM


HOW TO READ A NEURAL NETWORK TO GIVE FEEDBACK TO EXPERTS???

YOU HAVE TO EXPLAIN YOUR PREDICTIONS TO CONVINCE EXPERTS



MNIST: HANDWRITTEN DIGITS



READING THE BRAIN MAKE SENSE

NICE, BUT ON TRAIN CODES

FURTHER STEPS

- + FIX THE NEURAL NETWORKS PROBLEMS
- + NLP
- + EXTRACT MORE INFORMATION FROM TRAINED MODELS
- + IMPLEMENT RETROACTION ON MODELS IN PRODUCTION
- + EFFICIENT HYPERPARAMETER SEARCH
- + MACHINE LEARNING ASSISTED DECISION PROCESSES

THANK YOU

QUESTIONS?

