
TRANSACTIONS AND
ABSTRACTIONS  
OVER HBASE

Andreas Neumann  
@anew68	

!
Continuuity

AGENDA
• Transactions over HBase: Why? What?

• Implementation: How?
• The approach

• Transaction Manager

• Abstractions

• Future

WHO WE ARE
• Simple Access to Powerful Technology

• Continuuity Reactor: the world’s first scale-out application server
for Hadoop

• Fast, easy development, deployment and management of
Hadoop and HBase apps

• Collect, Process, Store, and Query data

• Real-time Stream Processing

http://www.continuuity.com/

HBase
Table

REAL-TIME STREAM PROCESSING

...Queue ...

...

Flowlet

... ...

HBase
Table

REAL-TIME STREAM PROCESSING

...Queue ...

...

Flowlet

... ...

HBase
Table

WRAP IN TRANSACTION!
...Queue ...

...

Flowlet

TRANSACTIONS: WHAT?
• Atomic - Entire transaction is committed as one

• Consistent - No partial state change due to failure

• Isolated - No dirty reads, transaction is only visible
after commit

• Durable - Once committed, data is persisted reliably

HBASE: QUICK “WHAT?”
• Open-source non-relational distributed column-

oriented database modeled after Google’s BigTable

• Named Tables

• Row key x Column key x timestamp -> Value

• Massive Scale

• Key space partitioned into Regions.

WHAT ABOUT HBASE?
• Atomic operations on cell value:  

checkAndPut, checkAndDelete, increment, append

• Atomic batch of operations on rows within region

• No cross region atomic operations support

• No cross table atomic operations support

• No multi-RPC atomic operations support

IMPLEMENTATION
• “OMID” style Snapshot Isolation

• Multi-Version Concurrency Control

• Cell version (timestamp) = transaction ID

• Reads exclude uncommitted transactions (for isolation)

• Optimistic Concurrency Control

• Conflict detection at commit of transaction

• Rollback in case of conflict (whichever commits later)

OPTIMISTIC CONCURRENCY
CONTROL

• Avoids cost of locking rows and tables

• No deadlocks or lock escalations

• Cost of conflict detection and possible rollback
is higher

• Good if conflicts are rare: short transaction,
disjoint partitioning of work

ZooKeeper

TRANSACTIONS IN CONTEXT

Tx Manager	

(standby)

HBase

Master 1

Master 2	

RS 1

RS 2 RS 4

RS 3

Client 1

Client 2

Client N

Tx Manager	

(active)

TRANSACTION LIFE CYCLE

time

out

try abort

failed

roll back

in HBase

write

to

HBase
do work

Client Tx Manager

none

complete V
abortsucceeded

in progress

start tx
start

start tx

committry commit check conflicts

RPC API

invalid Xinvalidate

failed

TRANSACTION MANAGER
• Create new transactions

• Provides monotonically increasing write pointers

• Maintains all in-progress, committed, and invalid transactions

• Detect conflicts

• Transaction =
	 	 	 Write Pointer: Timestamp for HBase writes

	 	 	 Read pointer: Upper bound timestamp for reads

	 	 	 Excludes: List of timestamps to exclude from reads

TRANSACTION MANAGER
• Simple & Fast

• All required state is in-memory

• Single point of failure?
• Periodically persist snapshot of all state

• Write-ahead log for all changes since last snapshot

• Secondary Tx Manager watches for failure of Primary

• Failover can happen quickly

TRANSACTION CLEANUP
• Some transactions time out or fail to roll back

• Invalid transactions must be excluded from reads

• Exclude list can get large over time

• Old versions may not be visible to any transaction

• TTL (time-to-live) expires old versions

DATA JANITOR
• RegionObserver coprocessor

• Maintains in-memory snapshot of recent invalid &
in-progress sets

• Periodically updates from transaction snapshot in
HDFS

• Purges data from invalid transactions and older
versions on flush & compaction

ABSTRACTION
• Dataset implements TransactionAware interface

void startTx(Transaction tx);

Collection<byte[]> getTxChanges();

boolean commitTx() throws Exception;

boolean rollbackTx() throws Exception;

• Other Data Stores than HBase

• HBase, LevelDB, HyperSQL, In-Memory, …

TRANSACTION AWARE
• Modulation of ACID by dataset implementation

• Granularity of keys - row, column, …

• In-memory caching of writes

• Skip rollback

• …

WHAT’S NEXT?
• Continue Scaling Tx Manager

• Transaction Groups?

• Integration across other transactional stores

• Open Source

• http://continuuity.com/blog

http://continuuity.com/blog

`
Looking for the chance to work with a team that is defining

a new category within Big Data?

!

We are hiring!
http://continuuity.com/careers

careers[at]continuuity.com
!
!

Andreas Neumann @anew68 andreas[at]continuuity.com

http://continuuity.com/careers
mailto:careers%5Bat%5Dcontinuuity.com?subject=
http://continuuity.com

