
Big Data Integration Patterns
Michael Häusler

Jun 12, 2017



The social network gives scientists new tools

to connect, collaborate, and keep up with the

research that matters most to them.

ResearchGate is built
for scientists.



Our mission is to connect the world of science
and make research open to all. 



12+ million
Members

100+ million
Publications

1,500+ million
Citations



operational systems

end users
12+ M scientists

“Analytics” Cluster
(batch)

“Live” Cluster
(near realtime)

internal users

HBase
replication

transactional load
(HBase reads / writes)

continuous updates
(Flink streaming results)

batch updates
(MR / Hive / Flink results)

data ingestion

Big Data



65+ 370+ 3,000+
Engineers Data Ingestion Jobs per Day

Big Data

Yarn Applications per Day



65+ 3,000+
Engineers Yarn Applications per Day

Developer Productivity

Ease of Maintenance

Ease of Operations



Big Data Architecture
Integration Patterns & Pricinicples



Patterns & Principles

Integration patterns should be strategic, but also ...

should be driven by use cases

should tackle real world pain points

should not be dictated by a single technology



Patterns & Principles

Big data is still a fast moving space

Big data batch processing today is quite different compared to 5 years ago

Big data stream processing is evolving heavily right now

Big data architecture

must evolve over time



First Big Data Use Case
Early 2011, Author Analysis



Author Analysis – Clustering and Disambiguation



Author Analysis – High Product Impact



Enriching User Generated Content

Users and batch flows continuously enrich an evolving dataset

Both user actions and batch flow results ultimately affect the same live database

Users Live Database Batch flow 



Bibliographic Metadata – Data Model

Author Asset Derivative

Publication

Journal

Institution

Department

Account

Affiliation

Citation

Authorship Publication Link

Affiliation

Claiming



community publication service asset service

Bibliographic Metadata – Services

Author Asset Derivative

Publication

Journal

Institution

Department

Account

Affiliation

Citation

Authorship Publication Link

Affiliation

Claiming



Implementation

publication 
service

author analysis

community



Implementation

publication 
service

author analysis

community

data sources
data ingestion

input data

data processing

intermediate results
final resultsexport of results

differ



#1 Decouple Data Ingestion



Implementation

publication 
service

author analysis

community

postgres reuse input data

mongodb

debug



Debugging an Error on Production

Your flow
has unit and integrations tests
but still breaks unexpectedly in production

You need to find the root cause
Is it a change in input data?
Is it a change on the cluster?
Is it a race condidition?

Crucial capabilities
Easy adhoc analysis of all involved data (input, intermediate, result)
Rerun current flow with current cluster configuration on yesterday’s data
Confirm hotfix by re-running on today’s data (exactly the same data that triggered the bug)



How to decouple?



Ingesting Data as Needed?



Publishing Data as Needed?



Dedicated Data Ingestion!



Platform Data Import

... Hive...

Adhoc Analytics



Platform Data Import

Dedicated component, but generic

Every team can onboard new data sources, as required by use cases

Every ingested source is immediately available for all consumers (incl. analytics)

Feature parity for all data sources (e.g., mounting everything in Hive)



#2 Speak a common format*

* have at least one copy of all data in a common format (e.g., avro)



Formats

Text SequenceFiles Avro ORC

X X +

schema evolution

self describing

reflect datum reader

flexible for batch & streaming

columnar

great for batch



Speak a common format

Have at least one copy of all data in a common format

Your choice of processing framework should not be limited by format of existing data

Every ingested source should be available for all consumers

When optimizing for a framework (e.g., ORC for Hive) consider a copy



#3 Speak a common language*

* continuously propagate schema changes



Structured or unstructured data?

... ...

mongodb (schemaless)

service knows structure

postgres (schema)



Data Warehouse vs. Data Lake

... ...

data lake

assume no schema

(defer schema to consumer)

data warehouse

enforce schema at ingestion

(schema on write)
X X



Can we have both?

Preserve schema information that is already present

some times at database level

many times at application level

Preserve full data – be truthful to our data source

continuously propagate schema changes

Can we have something like a Data Lakehouse?



Entities Define Schema

Code first

entities within owning service define schema

Auto conversion preferred

conversion to other representations via annotations

(JSON, BSON, Avro, ...)



Continuously propagate schema changes

Data ingestion process is generic and driven by avro schema

Changes in avro schema are continuously propagated to data ingestion process

Consumers with old schema can still read data due to avro schema evolution

Caveat: breaking changes still have to be dealt with by a change process

Everyone speaks the same language



Extra Benefit

service and batch processor

can share business logic



#4 Model Data Dependencies Explicitly



Model Data Dependencies Explicitly



Model Data Dependencies Explicitly

memento

publish

poll

1

2

3

4



Memento v2

memento publish

unique artifactId

memento poll <waiting-time>



Model Data Dependencies Explicitly

More flexible scheduling – run flows as early as possible

Allows multiple ingestion or processing attempts

Allows immutable data (repeatable read)

Allows analysis of dependency graph

which datasets are used by what flow



#5 Decouple export of results



Decouple export of results 



Decouple export of results 



Push results via HTTP to service

Export of results just becomes a client of the service

service does not have to be aware of big data technologies

Service can validate results, e.g.,

plausibility checks

optimistic locking

Makes testing much easier



Avro → Http

Part of the flow, but standardized component

Handles tracking of progress

treats input file as a “queue”

converts records to http calls

can be interrupted and resumed anytime

Sends standardized headers, e.g.,

X-rg-client-id: author-analysis

Handles backpressure signals from services



#6 Model Flow Orchestration Explicitly



Model Flow Orchestration Explicitly

Consider using an execution system like Azkaban, Luigi, or Airflow

Establish coding standards for orchestration, e.g.,

inject paths from outside – don’t construct them in your flow

inject calculation dates – never call now()

inject configuration settings – don’t hardcode -D mapreduce.map.java.opts=-Xmx4096m

foresee environment specific settings

Think about

ease of operations

tuning of settings

upgrades



What about Stream Processing?



Sources of Streaming Data

entity conveyor

timeseries data

non-timeseries data
(e.g., graph data)

kafka

kafka



Stream Processing

stream processor mqcom

#2 Speak a common format #5 Decouple export of results 

#1 Decouple data ingestion

#3 Speak a common language

#6 Model flow execution explicitly



What about #4 ?
Model Data Dependencies Explicitly

We think about it

Depends on use cases and pain points

Potentially put Kafka topics into Memento

storing “offsets of interest” from producers

facilitate switching between incompatible versions of stream processors



Evolving Big Data Architecture

stream processor

batch processor



Thank you!
Michael Häusler, Head of Engineering

https://www.researchgate.net/profile/Michael_Haeusler

https://www.researchgate.net/careers


