

“Business group showing diversity in a meeting”

Mono culture = clean

Diversity = messy

Embracing Diversity in
Databases

Frank @Lyaruu

CTO Dexels

Technology Hipster

Amsterdam

How can we reduce the cost of
diversity in software?

API

How can we reduce the cost of
diversity in software?

databases?

Microservice

API

Any private store

Code in whatever
language

Different parts need the same
data

… but in a different way

Application

UI

SQL Database

Code in some
language

Analytics code

Analytics UI

Application Service

UI

SQL Database

Code in some
language

Analytics UI

Analytics code

Analytics Service

Analytics Database

Analytics API

That was easy!

Application Service

UI

SQL Database

Code in some
language

Analytics UI

Analytics code

Analytics Service

Analytics Database

Analytics API

What does that even mean?

How would that work?

GET /give-me-everything
?

GET /get-all-personids
+

GET /person?id=123
?

GET /data?query=“SELECT AVG(age) FROM PERSON”

Application Service

UI

SQL Database

Code in some
language

Analytics UI

Analytics code

Analytics Service

SQL Database

Magic* Replication Tool

*Expensive

Issues

• Data stores are no longer private. We have a tight coupling between
databases. It’s not a micro service

• We can’t use any interesting databases :-(

• Difficult to scale out to many services

Event Driven Microservices
Not your father’s micro services

Event Driven Microservices

• Services push events instead of a request/response model

• Usually backed by a publish/subscribe bus

Application Service

SQL Database

Code in some language

Event Bus

topic: PERSON
{
 id: 123
 name: “Alfredo”
 dob: 1965-5-1
}

Analytics Service

Analytics Database

Code in some language

topic: PERSON
{
 id: 123
 name: “Alfredo”
 dob: 1965-5-1
}

Kafka

Kafka
• Persistent pub/sub message bus

• High throughput

• Subscribers can consume at their own speed

• Subscribers can request a ‘rewind’ and re-consume a topic

• Has some tricks to keep the data volume down

• Having both fast and slow consumers is not a problem

• Service provider for professional and amateur team sports in the
Netherlands

• 10+ years old

• Managing personal data, planning competitions, assigning officials,
supplying data feeds

• 1M+ players

• 4K+ clubs

• 40K matches a week

• Spikey but predictable load

Technology stack

• Oracle database

• Cluster of Java based application servers

• Diverse set of clients

Challenge

• Move to a player centric model instead of a club centric

• Order of magnitude more users and load

• Moving away from Oracle is not feasible in the short term

• Scaling Oracle is just too expensive

Core Service

Oracle Database

Java Application Server

Kafka

topic: PERSON
{
 id: 123
 name: “Alfredo”
 dob: 1965-5-1
}

User Backend Service

MongoDB Database

Java Application Server

topic: PERSON
{
 id: 123
 name: “Alfredo”
 dob: 1965-5-1
}

SELECT * FROM Communication C WHERE PersonId = 1

SELECT * FROM Person WHERE PersonId=1

Example

MongoDB

{
 “_id":1,
 "Name":"Alfredo",
 "DOB":"1990-1-1",
 "Communication":{
 "Mobile":"12345",
 "Email":"alfredo@aol.com",
 "Twitter":"@alfredo"
 }
}

Stream Processing
SQL Record SQL Record

Stream
transformation

MongoDB

Stream Processing
SQL Record SQL Record

Kafka Streams

MongoDB

RocksDB

Kafka Streams at Scale
• ± 500M rows of SQL data

• ± 50 joins

• 500 topics

• 400 Gb of Kafka Data

• 300 Gb of RocksDb data

• Building a complete replica from scratch takes many hours

• After that <100ms latency for changes

Development cycle

• Developing and testing is hard for stateful code

• Starting a new ‘generation’ is costly

• Contaminated data might show up

Conclusions

• Went into production early June

• Generally behaves well (aside from some glitches)

• Kafka Streams is in a lot better state than a few months ago

Elasticsearch

• Add unstructured search to our application

• Reduces load on our source databases

• Users expect google-like interfaces

Neo4J

• Graph Database

• Some analytics are much easier to express in terms of graphs

Firebase Realtime
• Real-time database

• ‘Backend As a Service’

• Essentially one big JSON document

• Very easy to use client libraries for web and mobile

• Safe to develop

Caches

• We can use our streaming engine to update caches

Push to clients

• We can push data to clients in real time

Things I ignored

• Change Capture (“Change Data Capture: The Magic Wand We
Forgot”)

• Eventual consistency

• Kafka compaction / partitioning

Thank you

Questions?*

* Any question that is not: “Why don’t you use Postgres? Postgres can do anything”

