
Querying a Lucene
Index

Queries and Scorers and Weights, oh my!

Alan Woodward - alan@flax.co.uk - @romseygeek

mailto:alan@flax.co.uk

• We build, tune and support fast, accurate and highly scalable
search, analytics and Big Data applications

• We use (and create) open source software

• We’re independent, honest, and have 15+ years experience

• We also:

• Run and attend events, meetups and conferences

• Write extensively about search and related matters

• Offer training and mentoring

How does a lucene
query work?

• Tour through lucene classes

• Matching

• Collection

• Some queries

• Cacheing

Why should I care?

IndexReader

IndexSearcher

Query

Weight
Scorer

Collector

LeafCollector

TopDocs

LeafReaderContext

IndexReader
• Mediates read-only access to the data structures of

a lucene index

IndexReader
• Mediates read-only access to the data structures of

a lucene index

IndexSearcher
• Wraps an IndexReader and provides methods for

querying

Query
• Defines what should be retrieved from an index

• IndexReader independent

• Generally immutable

• Many different types shipped with lucene

TermQuery

BooleanQuery
PhraseQuery

WildcardQuery
PointRangeQuery

Weight

• Representation of a Query for a specific
IndexReader

• Not normally seen by the client

• Maintains state for a query that relates to the whole
index

Weight
• Created by Query.createWeight(IndexSearcher,

boolean, float)

• Not all queries can create a Weight - some need to
be rewritten first

• e.g. AutomatonQuery gets rewritten against the
terms dictionary to a disjunction query of some
kind

A diversion…

Lucene index structure
• Indexes consist of multiple immutable segments

• Each segment is a mini-index

• Segments are built in memory and flushed to disk
on commits

• Background merges ensure that the number of
segments is kept under control

Lucene index structure
• A top-level IndexReader has a leaves() method

that returns a list of LeafReaderContext objects

• Each LeafReaderContext records its position
within the index as a whole, enabling consumers to
map doc ids within the segment to an index-global
id

• The LeafReaderContext also allows access to a
LeafReader

What does this mean
for searching?

• IndexReader only gives us a top-level view of the
index and access to some statistics

• To access data structures we need to iterate over a
set of LeafReader objects, one per segment

• Weight is a top-level object against an
IndexReader

• We need a different object for LeafReaders

Scorer
• Maintains state for a query per LeafReader

• Provides an iterator over documents in a single segment
that match the parent query

• Also provides access to the scoring mechanism

• Generated by Weight.scorer(LeafReaderContext)

• Returning a null scorer means no matches in this
segment

Let’s tie it all together

• Query objects are independent of the index

• Given an IndexReader, a Query can create a
Weight

• To match documents, a Weight will create a
Scorer for each segment in the index

• Each Scorer then provides an iterator which
iterates over the matching documents in a segment

Or, in pseudo-code…
Weight w = query.createWeight(searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
 Scorer s = w.scorer(ctx);
 DocIdSetIterator it = s.iterator();
 while (it.nextDoc() != NO_MORE_DOCUMENTS) {
 // .. do something with it.docId()

}
}

Or, in pseudo-code…
Weight w = query.createWeight(searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
 Scorer s = w.scorer(ctx);
 DocIdSetIterator it = s.iterator();
 while (it.nextDoc() != NO_MORE_DOCUMENTS) {
 // .. do something with it.docId()

}
}

What do we do here?

Collector

• Defines what to do with each match as it is reached

• Top-level Collector has a method which returns a
LeafCollector for each segment

• For each matching document, the LeafCollector’s
collect(int doc) method is called

Or, in pseudo-code…
Weight w = query.createWeight(searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
 Scorer s = w.scorer(ctx);
 LeafCollector c = collector.getLeafCollector(ctx);
 c.setScorer(s);
 DocIdSetIterator it = s.iterator();
 while (it.nextDoc() != NO_MORE_DOCUMENTS) {
 c.collect(it.docID());

}
}

• Lucene comes with a number of pre-packaged
Collectors

• IndexSearcher.search(Query, int) uses
TopScoreDocCollector to return the top-n
matching documents, sorted by score

• IndexSearcher.search(Query, int, Sort) uses
TopFieldCollector to return the top-n matching
documents, sorted by field

• Or you can pass your own to
IndexSearcher.search(Query, Collector)

• The Top*Collector classes use a priority queue to
store their top-n hits

• Expensive for deep paging, as you need to allocate
a queue that’s as big as your page depth

• IndexSearcher.searchAfter(ScoreDoc, Query, int) to
the rescue!

• Allows the PQ to exclude documents at the top of
the queue as well as the bottom

• Collection and scoring are done at iteration time

• This means that the scoring algorithm doesn’t know
how many documents will match when scores are
calculated

• It also doesn’t know anything about other
matching documents

• Rescorer allows you to run a first-pass search with
a low cost scoring algorithm, and then run a
second pass over the top-k results

Matching

TermQuery
• Scorer implementation is TermScorer

• Takes a PostingsEnum iterator generated from a
LeafReader via a Terms reference

• nextDoc() just delegates to the PostingsEnum

• If the PostingsEnum is null, then
TermWeight.scorer() will also return null

BooleanQuery
• Number of different Scorer implementations

depending on the clauses

• ConjunctionScorer for pure conjunctions

• DisjunctionSumScorer for pure disjunctions

• ReqOptScorer for combinations

• ReqExclScorer for exclusions

BooleanQuery
• ConjunctionScorer sorts its child scorers by their

cost

• Calls nextDoc() on its lead scorer, and then
advances all other scorers to the lead docId

• If it’s a match, then return; otherwise, advance the
lead scorer to the maximum docId of the child
scorers

BooleanQuery
• DisjunctionSumScorer maintains a priority queue of

its child scorers

• All scorers are advanced to their first matching
document before iteration begins

• nextDoc() advances the scorer with the lowest doc
id and updates the priority queue

• current docId is the docId of the bottom of the
queue

BooleanQuery
• ReqOptScorer combines a conjunction and a

disjunction

• If scores aren’t required, it just delegates to the
conjunction

• Otherwise it advances using the conjunction, and
then advances the disjunction to the current doc for
scoring.

BooleanQuery

• ReqExclScorer takes a child scorer of any kind
(conjunction, disjunction, ReqOptScorer) and an
exclusion scorer

• Advances using the child scorer, and then checks
that the exclusion scorer doesn’t match on the
same document

PhraseQuery

• Two Scorer implementations: ExactPhraseScorer
and SloppyPhraseScorer

• Take a PostingsEnum per term, and an offset

• nextDoc() finds the next document containing all
terms, and then checks positions to see if the
phrase exists

Cacheing

Cacheing

• Useful to cache the result of complex queries,
particularly when you’re not interested in scores

• IndexSearcher comes with a built-in QueryCache
that will handle this for you

Cacheing
• Rather than calling Query.createWeight() directly,

we call IndexSearcher.createWeight(Query,
boolean, float)

• If scores aren’t required, then the searcher’s query
cache will wrap the returned weight with a
CacheingWrapperWeight

• This then caches the results from individual
segments

Cacheing

• When Weight.scorer() is called, the
CacheingWrapperWeight checks its cache to see if
it can just replay the cached bitset.

• Because the cache operates at the segment level,
you can re-use it when you reopen a searcher.

Cacheing

• How do you tell a searcher that scoring isn’t
required?

• Collector.needsScores()

• BooleanQuery.FILTER

Questions?

