Querying a Lucene
Index

Queries and Scorers and Weights, oh my!

Alan Woodward - alan@flax.co.uk - @romseygeek

;‘L_

flaxse®


mailto:alan@flax.co.uk

flax

The Open Source Search Specialists

We build, tune and support fast, accurate and highly scalable
search, analytics and Big Data applications

We use (and create) open source software

We're independent, honest, and have 15+ years experience
We also:

 Run and attend events, meetups and conferences

* Write extensively about search and related matters

e QOffer training and mentoring



How does a lucene
query work??

e Jour through lucene classes

e Matching

e Collection

e SOome queries

e Cacheing

The Open Source Search Specialists



Why should | care”

The Open Source Search Specialists



IndexReader

L eafReaderContext
LeafCollector IndexSearcher
Scorer
Weignt
Collector
Query TopDocs

The Open Source Search Specialists



INndexReader

* Mediates read-only access to the data structures of
a lucene index

The Open Source Search Specialists



INndexReader

* Mediates read-only access to the data structures of
a lucene index

lndexSearcher

* Wraps an IndexReader and provides methods for
guerying

The Open Source Search Specialists



Query

Defines what should be retrieved from an index

IndexReader independent

Generally immutable

Many different types shipped with lucene

TermQuery

WildcardQuery

PointRangeQuery

PhraseQuery

BooleanQuery

The Open Source Search Specialists



Weignt

* Representation of a Query for a specific
IndexReader

* Not normally seen by the client

 Maintains state for a query that relates to the whole
index

The Open Source Search Specialists



Weignt

* Created by Query.createWeight(IndexSearcher,
boolean, float)

* Not all queries can create a Weight - some need to
be rewritten first

* e.g. AutomatonQuery gets rewritten against the

terms dictionary to a disjunction query of some
Kind

The Open Source Search Specialists



A diversion...

The Open Source Search Specialists



L ucene Index structure

Indexes consist of multiple immutable segments
Each segment is a mini-index

Segments are built in memory and flushed to disk
on commits

Background merges ensure that the number of
segments Is kept under control

The Open Source Search Specialists



L ucene Index structure

* A top-level IndexReader has a leaves() method
that returns a list of LeafReaderContext objects

 Each LeafReaderContext records its position
within the index as a whole, enabling consumers to

map doc ids within the segment to an index-global
fe

e The LeafReaderContext also allows access to a
LeafReader

The Open Source Search Specialists



What does this mean
for searching”

The Open Source Search Specialists



IndexReader only gives us a top-level view of the
INdex and access to some statistics

To access data structures we need to Iterate over a
set of LeafReader objects, one per segment

Weight Is a top-level object against an
IndexReader

We need a different object for LeafReaders

The Open Source Search Specialists



Scorer

Maintains state for a query per LeatReader

Provides an iterator over documents in a single segment
that match the parent query

Also provides access to the scoring mechanism
Generated by Weight.scorer(LeafReaderContext)

Returning a null scorer means no matches in this
segment

The Open Source Search Specialists



| et’s tie It all together

The Open Source Search Specialists



Query objects are independent of the index

Given an IndexReader, a Query can create a
Weight

To match documents, a Weight will create a
Scorer for each segment in the index

Each Scorer then provides an iterator which
iterates over the matching documents in a segment

The Open Source Search Specialists



Or, In pseudo-code...

Welght w = query.createWeight (searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
Scorer s = w.scorer (ctx);
DocIdSetIterator 1t = s.iterator();
while (it.nextDoc () != NO MORE DOCUMENTS) {
// .. do something with it.docId()

flax®

The Open Source Search Specialists



Or, In pseudo-code...

Welght w = query.createWeight (searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
Scorer s = w.scorer (ctx);
DocIdSetIterator 1t = s.iterator();
while (it.nextDoc () != NO MORE DOCUMENTS) {
// .. do something with it.docId()

What do we do here”

The Open Source Search Specialists



Collector

e Defines what to do with each match as it is reached

* Jop-level Collector has a method which returns a
LeafCollector for each segment

* For each matching document, the LeafCollector’s
collect(int doc) method is called

The Open Source Search Specialists



Or, In pseudo-code...

Weight w = query.createWelght (searcher, true, 1.0);
for (LeafReaderContext ctx: reader.leaves()) {
SCOorer s = W.Scorer (ctx);
LeatCollector ¢ = collector.getlLeafCollector (ctx);
c.setScorer(s);
DocIdSetIterator 1t = s.iterator();
while (1t.nextDoc() != NO MORE DOCUMENTS) {
c.collect (1t.docID());

flax®

The Open Source Search Specialists



* Lucene comes with a number of pre-packaged
Collectors

* IndexSearcher.search(Query, int) uses
TopScoreDocCollector to return the top-n
matching documents, sorted by score

* IndexSearcher.search(Query, int, Sort) uses

TopFieldCollector to return the top-n matching
documents, sorted by field

 Or you can pass your own to
IndexSearcher.search(Query, Collector)

The Open Source Search Specialists



The Top*Collector classes use a priority queue to
store their top-n hits

Expensive for deep paging, as you need to allocate
a queue that’s as big as your page depth

IndexSearcher.searchAfter(ScoreDoc, Query, int) to
the rescue!

Allows the PQ to exclude documents at the top of
the queue as well as the bottom

The Open Source Search Specialists



* Collection and scoring are done at iteration time

* This means that the scoring algorithm doesn't know
how many documents will match when scores are
calculated

* |t also doesn't know anything about other
matching documents

The Open Source Search Specialists



 Rescorer allows you to run a first-pass search with
a low cost scoring algorithm, and then run a
second pass over the top-k results

The Open Source Search Specialists



Matching

The Open Source Search Specialists



TermQuery

Scorer implementation is TermScorer

Takes a PostingsEnum iterator generated from a

LeafReader via a Terms reference

nextDoc() just delegates to the PostingsEnum

It the PostingsEnum is null, then
TermWeight.scorer() will also return null

The Open Source Search Specialists



BooleanQuery

Number of different Scorer implementations
depending on the clauses

ConjunctionScorer for pure conjunctions
DisjunctionSumScorer for pure disjunctions
RegOptScorer for combinations

ReqgExclScorer for exclusions

The Open Source Search Specialists



BooleanQuery

e ConjunctionScorer sorts its child scorers by their
cost

 Calls nextDoc() on its lead scorer, and then
advances all other scorers to the lead docld

e |fit's a match, then return; otherwise, advance the

lead scorer to the maximum docld of the child
ScCorers

The Open Source Search Specialists



BooleanQuery

DisjunctionSumScorer maintains a priority gueue of
its child scorers

All scorers are advanced to their first matching
document betfore iteration begins

nextDoc() advances the scorer with the lowest doc
id and updates the priority queue

current docld is the docld of the bottom of the
queue "

The Open Source Search Specialists



BooleanQuery

 RegOptScorer combines a conjunction and a
disjunction

e |f scores aren'’t required, it just delegates to the
conjunction

« Otherwise it advances using the conjunction, and
then advances the disjunction to the current doc for
scoring.

The Open Source Search Specialists



BooleanQuery

* RegExclScorer takes a child scorer of any kind
(conjunction, disjunction, RegOptScorer) and an
exclusion scorer

 Advances using the child scorer, and then checks
that the exclusion scorer doesn’'t match on the

same document

The Open Source Search Specialists



PhraseQuery

* [Two Scorer mplementations: ExactPhraseScorer
and SloppyPhraseScorer

* Take a PostingsEnum per term, and an offset

* nextDoc() finds the next document containing all
terms, and then checks positions to see if the
phrase exists

The Open Source Search Specialists



Cacheing

The Open Source Search Specialists



Cacheing

e Useful to cache the result of complex queries,
particularly when you're not interested in scores

* IndexSearcher comes with a built-in QueryCache
that will handle this for you

The Open Source Search Specialists



Cacheing

* Rather than calling Query.createWeight() directly,
we call IndexSearcher.createWeight(Query,

boolean, float)

e |t scores aren't required, then the searcher’s query
cache will wrap the returned weight with a
CacheingWrapperWeight

e This then caches the results from individual
segments

The Open Source Search Specialists



Cacheing

 When Weight.scorer() is called, the

CacheingWrapperWeight checks its cache to see it
it can just replay the cached bitset.

 Because the cache operates at the segment level,
yYOu can re-use it when you reopen a searcher.

The Open Source Search Specialists



Cacheing

 How do you tell a searcher that scoring isn't
required?

e Collector.needsScores()

e BooleanQuery.FILTER

The Open Source Search Specialists



Questions?

The Open Source Search Specialists



