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Query: “mcdonalds in 92801”

Title Boost,
“Freshness” Boost



Query: “mcdonalds in 90024”



Query: “mcdonalds in 11231”







Our Workers don’t know what they want.



Query: “part time in 11231”



The Real Problem

Hand-tuned relevance does not work for us.

● Field boosts are complex, and difficult to maintain.

● Users are not often searching with a precise keyword set, yet job decisions 
are very personal. 

● Geography plays an important factor in relevance

● Humans are complicated! Relevance factors are non-linear!



Solution: Learning to Rank

Let our data drive the ranking of an 
optimal combination of jobs for our 
workers.



Solution: Learning to Rank

+ = Elasticsearch
LTR Plugin v. 0.1



grade,keyw ords,docId

4,Ram bo,7555    #  Ram bo
3,Ram bo,1370    #  Ram bo III
0,Ram bo,102947  #  First Daughter
4,Rocky,1366    #  Rocky
...

Quality of doc 
per query

Start w/ Judgment Lists



Classic Relevance Tuning
grade,keyw ords,docId

4,Ram bo,7555    #  Ram bo
3,Ram bo,1370    #  Ram bo III
0,Ram bo,102947  #  First Daughter
4,Rocky,1366    #  Rocky
...

Content 
features

Hand-tuned queries 
and analysis

dev

Run test keywords

rambo
rocky

Evaluate



Learning to Rank

Content 
features

Model Design

dev

training/test 
queries

rambo
rocky

Results

grade,keyw ords,docId

4,Ram bo,7555    #  Ram bo
3,Ram bo,1370    #  Ram bo III
0,Ram bo,102947  #  First Daughter
4,Rocky,1366    #  Rocky
...



LTR System

Learning to Rank + ES
grade,keyw ords,docId

4,Ram bo,7555    #  Ram bo
3,Ram bo,1370    #  Ram bo III
0,Ram bo,102947  #  First Daughter
4,Rocky,1366    #  Rocky
...

Content 
features

Model Design & 
Baseline ranking f'n

dev

keyword

rambo
rocky

Results

Query-dep. 
features (signals)

rescore N

hand-tuned results

Reranked



Judgment List -> Training 
Set

grade,keyw ords,docId

4,Ram bo,7555  #  Ram bo
3,Ram bo,1370 #  Ram bo III
0,Ram bo,102947 #  First Daughter
4,Rocky,1366 #  Rocky
...

Features: Logged ES Query Scores
{
   "query": {
       "m atch": {
          "title": "< < keyw ord> > " 
       }
   }
}

grade,queryId,titleScore,bodyScore

4 qid:1 1:0.5  2:24.4
3 qid:1 1:0.76 2:12
0 qid:1 1:10   2:947
4 qid:2 1:4    2:59
...



Training Set -> Model

Features: Logged ES Query Scores
{
   "query": {
       "m atch": {
          "title": "< < keyw ord> > " 
       }
   }
}

grade,queryId,titleScore,bodyScore

4 qid:1 1:0.5  2:24.4
3 qid:1 1:0.76 2:12
0 qid:1 1:10   2:947
4 qid:2 1:4    2:59
...

Ranklib or 
other tool

Title score

Body Score



Model -> Elasticsearch
POST _scripts/ranklib/dougs_model
{
  "script": "## LambdaMART\n## No. of trees 
= 1\n## No. of leaves = 10\n## No. of 
threshold candidates = 256\n## Learning rate 
= 0.1\n## Stop early = 100\n\n<ensemble>\n 
<tree id=\"1\" weight=\"0.1\">\n  <split>\n   
<feature> 1 </feature>\n   <threshold> 
0.45867884 </threshold>\n   <split 
pos=\"left\">\n    <feature> 1 </feature>\n    
<threshold> 0.0 </threshold>\n    <split 
pos=\"left\">\n     <output> -2.0 </output>\n    
….

Plugin Functionality 1: "ranklib" scripting 
language for specifying LTR models:



Query w/ Model

PO ST _scripts/ranklib/dougs_m odel
{
  "script": "# #  Lam bdaM ART\n# # a No. of 
trees =  1\n# #  No. of leaves =  10\n# #  
No. of threshold candidates =  256\n# #  
Learning rate =  0.1\n# #  Stop early =  
100\n\n< ensem ble> \n < tree id= \"1\" 
w eight= \"0.1\"> \n  < split> \n   < feature>  
1 < /feature> \n   < threshold>  
0.45867884 < /threshold> \n   < split 
pos= \"left\"> \n    < feature>  1 
< /feature> \n    < threshold>  0.0 
< /threshold> \n    < split pos= \"left\"> \n    
 < output>  -2.0 < /output> \n    … .

Plugin Functionality 2: "ltr" query that 
executes a model

Plugin Functionality 1: "ranklib" scripting 
language for specifying LTR models:

Model we 
just stored

Feature "1" in 
training data

Feature "2" in 
training data



You ought to rescore...
Plugin Functionality 2: "ltr" query that 
executes a model

Baseline query

Rescore top 
500

Same ltr query



Y u no just use model?!?

Feature 
engineering

keyword

Awesome search results

(do you need Solr/Elasticsearch here!?)

Problems w/ just model: 
- Performance: search engines can prefilter what models score
- Query-dependent features: many features depend on keyword (i.e TF*IDF on 

certain fields) ~ "signals"
- Business Rules: influencing ranking beyond user relevance
- Functionality: facets, paging, grouping, spell checking, autocomplete, etc etc...



Lesson 1: Judgments == Hard!

Who defines this? 
- Domain Experts?
- User analytics?
- Testing w/ Users?
- Devs?
- Sue in marketing?
- HiPPO (highest paid person's 

opinion?)

Do all these people agree!?

(really go buy my book because this 
is the *real* hard stuff)



No one size fits all

Interpret Analytics (clicks, 
conversions, etc)

Interpret User Testing 
(classic judgment lists)

Takeaway: "Interpret" in 
both cases takes domain 
expertise

Consumer-facing Knowledge-Mgmt

Challenges

Less depth into "why" 
behind keywords

Poor Info Need 
differentiation

Cost: 
Infrastructure/code for 
analytics

Challenges

Less data, low Statistical 
significance

Complex info needs

Cost: time consuming, 
paying experts, experts 
don't have time



Lesson 2: Grade 
Consistency

OpenSource Connections Blog Example

- 4 -- article written on keyword topic within last year
- 3 -- article written on topic within last 5 years OR 

adjacent topic in last year
- 2 -- adjacent topic more than a year old
- 1 -- not relevant
- 0 -- opposite meaning of keywordsOSC's blog has at best a "2" for 

the keyword "enterprise service 
bus" (because we have some old 
Apache Camel articles)

Don't make judgment grades 
keyword relative!

Notice how a global sense of what a "4" is 
means easier to perform regression to predict 
the "4s" from many examples
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Lesson 3:What should we optimize 
for?

Precision@n - good stuff near top!

NDCG@n - close to your best results

ERR@n - trust perception scanning results

No position bias

Your best might stink!

Users don't realize 
there's better out there

Which should we optimize for?
Yes.



Lesson 4: Accuracy vs Speed

When your training infra is... But your search infra is handling….

(big lumbering pile of dedicated compute) (less time per 'search requests')



Lesson 5: Model 
Selection?

Matters *less* than you think

Linear Models: (aka optimizing "boosts") 
simple use cases, doesn't get "nuance"

Gradient Boosting/SVM/Random Forest: 
personal experience/preference how much 
you can understand/debug the model?

Generally: Garbage In/Garbage Out!
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Multiple Models?

Prec@500 NDCG@50 ERR@10 

Simple/Fast Model: 
Crowd top 500 w/ 
'good stuff'

Optimize best first First page trustworthy 
very accurate but 
slow



Lesson 6: 
Quality/Accuracy

- Separate test and training data

- With complex models: I often use simple best 
subset selection on small number of features

- Tree-based systems, often a *mix* of features 
offers context, so look for best performing mix

- Which combinations features perform best? Did 
changing features change relative performance 
offline on test data?

Every machine learning 
problem can be solved by 
adding one more for loop!
(or Spark map job)



Lesson 7: This is *harder*
LTR Team & InfraHand Tuned Team & Infra

EngineersStakeholders

Search Engine

Search
Engine

Training Compute
Stakeholders Engineers

Data Scientists

User 
clickstream 
data
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BUT it comes more POOOWER!!
Learning to Rank driven personalized search + 
recsys

LTR plugin



LTR for Job 
Matching:
The Plan



0. Remember this is an iterative 
process



1.Determine how to measure success

● NDCG@10

● ERR@10



1.Determine how to measure success

Don’t forget UX / UI!



2. Establish Baseline Ranking Function

“Best shot” at ranking the top-k before rescoring

example: Gaussian distance & freshness decay, 
BM25 similarity, geo radius



2. Establish Baseline Ranking Function

“Real World Considerations”: 

● Distance decay wasn’t aggressive enough.

● Freshness decay had the same problem.

● Location facets present interesting edge cases. 



2. Establish Baseline Ranking Function

“Real World Considerations”: 

● Current thinking is to let baseline ranker handle recall, and 
the LTR model to optimize precision.



3. Feature Engineering

● Brand
● Zipcode
● Title
● Description
● Location

Start small!



3. Feature Engineering

Then improve constantly….



3. Feature Engineering

Features need not be “search-y” things!

● Content profiles

● Commute distance as a function of roads or transit

● Market forces (supply + demand, etc)



4. Train Models! (LambdaMART)

grade,keyw ords,docId

4,KFC,7555    #  KFC
3,KFC,1370    #  Pizza Hut
0,KFC,102947  #  Uber
4,M acy’s,1366  #  M acy’s
...

< ensem ble>
  < tree id= "1" w eight= "1.0E-4">
    < split>
  < feature> 5< /feature>

  < threshold>  7.53730 
        < /threshold>
    < split pos= "left">
...

Data Warehouse

feature values



4. Train Models! (LambdaMART)

Think about combining 
latent factor models with 
your training set!



Training - “Real world” considerations
● Ranklib Training performance

Macbook: 
2.7MM Judgements - 5 hours (max tree depth of 20)

M4.4Xlarge: 
30 minutes -  (max tree depth of 100)



Training - “Real world” considerations

Data Model Results



Training - “Real world” considerations

Query dependent features at training time vs. query 
time.



5. Integrate with an existing 
platform?

NO.



5. Integrate with an existing 
platform?



6. Profit?

???



6. Profit?

NDCG@10: +20.17%
ERR@10:    +37.13%

Model V1: (10 bags, 10 trees, 20 leaves) 



Hyperparameters
matter!



6. Profit?

NDCG@10: +30.17%  (+10.17%)
ERR@10:    +49.06%  (+11.93%)

Model V2: (10 bags, 50 trees, 100 leaves) 



https://github.com/o19s/elasticsearch-learning-to-rank

Please try it and report bugs!

Questions...

Discount code relsearch

https://github.com/o19s/elasticsearch-learning-to-rank
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