
We built the Elasticsearch LTR
Plugin!

…then came the hard part…

Doug Turnbull
Chief Consultant
OpenSource Connections
dturnbull@o19s.com
@softwaredoug

Jason Kowalewski
Sr. Director, Engineering
Snagajob
jason.kowalewski@snagajob.com

mailto:dturnbull@o19s.com

- Solr & Elasticsearch Relevance
Consultants

- Specialized Search,
Recommendations &
Information Retrieval

OpenSource Connections

Query: “mcdonalds in 92801”

Title Boost,
“Freshness” Boost

Query: “mcdonalds in 90024”

Query: “mcdonalds in 11231”

Our Workers don’t know what they want.

Query: “part time in 11231”

The Real Problem

Hand-tuned relevance does not work for us.

● Field boosts are complex, and difficult to maintain.

● Users are not often searching with a precise keyword set, yet job decisions
are very personal.

● Geography plays an important factor in relevance

● Humans are complicated! Relevance factors are non-linear!

Solution: Learning to Rank

Let our data drive the ranking of an
optimal combination of jobs for our
workers.

Solution: Learning to Rank

+ = Elasticsearch
LTR Plugin v. 0.1

grade,keyw ords,docId

4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # First Daughter
4,Rocky,1366 # Rocky
...

Quality of doc
per query

Start w/ Judgment Lists

Classic Relevance Tuning
grade,keyw ords,docId

4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # First Daughter
4,Rocky,1366 # Rocky
...

Content
features

Hand-tuned queries
and analysis

dev

Run test keywords

rambo
rocky

Evaluate

Learning to Rank

Content
features

Model Design

dev

training/test
queries

rambo
rocky

Results

grade,keyw ords,docId

4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # First Daughter
4,Rocky,1366 # Rocky
...

LTR System

Learning to Rank + ES
grade,keyw ords,docId

4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # First Daughter
4,Rocky,1366 # Rocky
...

Content
features

Model Design &
Baseline ranking f'n

dev

keyword

rambo
rocky

Results

Query-dep.
features (signals)

rescore N

hand-tuned results

Reranked

Judgment List -> Training
Set

grade,keyw ords,docId

4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # First Daughter
4,Rocky,1366 # Rocky
...

Features: Logged ES Query Scores
{
 "query": {
 "m atch": {
 "title": "< < keyw ord> > "
 }
 }
}

grade,queryId,titleScore,bodyScore

4 qid:1 1:0.5 2:24.4
3 qid:1 1:0.76 2:12
0 qid:1 1:10 2:947
4 qid:2 1:4 2:59
...

Training Set -> Model

Features: Logged ES Query Scores
{
 "query": {
 "m atch": {
 "title": "< < keyw ord> > "
 }
 }
}

grade,queryId,titleScore,bodyScore

4 qid:1 1:0.5 2:24.4
3 qid:1 1:0.76 2:12
0 qid:1 1:10 2:947
4 qid:2 1:4 2:59
...

Ranklib or
other tool

Title score

Body Score

Model -> Elasticsearch
POST _scripts/ranklib/dougs_model
{
 "script": "## LambdaMART\n## No. of trees
= 1\n## No. of leaves = 10\n## No. of
threshold candidates = 256\n## Learning rate
= 0.1\n## Stop early = 100\n\n<ensemble>\n
<tree id=\"1\" weight=\"0.1\">\n <split>\n
<feature> 1 </feature>\n <threshold>
0.45867884 </threshold>\n <split
pos=\"left\">\n <feature> 1 </feature>\n
<threshold> 0.0 </threshold>\n <split
pos=\"left\">\n <output> -2.0 </output>\n
….

Plugin Functionality 1: "ranklib" scripting
language for specifying LTR models:

Query w/ Model

PO ST _scripts/ranklib/dougs_m odel
{
 "script": "# # Lam bdaM ART\n# # a No. of
trees = 1\n# # No. of leaves = 10\n# #
No. of threshold candidates = 256\n# #
Learning rate = 0.1\n# # Stop early =
100\n\n< ensem ble> \n < tree id= \"1\"
w eight= \"0.1\"> \n < split> \n < feature>
1 < /feature> \n < threshold>
0.45867884 < /threshold> \n < split
pos= \"left\"> \n < feature> 1
< /feature> \n < threshold> 0.0
< /threshold> \n < split pos= \"left\"> \n
 < output> -2.0 < /output> \n … .

Plugin Functionality 2: "ltr" query that
executes a model

Plugin Functionality 1: "ranklib" scripting
language for specifying LTR models:

Model we
just stored

Feature "1" in
training data

Feature "2" in
training data

You ought to rescore...
Plugin Functionality 2: "ltr" query that
executes a model

Baseline query

Rescore top
500

Same ltr query

Y u no just use model?!?

Feature
engineering

keyword

Awesome search results

(do you need Solr/Elasticsearch here!?)

Problems w/ just model:
- Performance: search engines can prefilter what models score
- Query-dependent features: many features depend on keyword (i.e TF*IDF on

certain fields) ~ "signals"
- Business Rules: influencing ranking beyond user relevance
- Functionality: facets, paging, grouping, spell checking, autocomplete, etc etc...

Lesson 1: Judgments == Hard!

Who defines this?
- Domain Experts?
- User analytics?
- Testing w/ Users?
- Devs?
- Sue in marketing?
- HiPPO (highest paid person's

opinion?)

Do all these people agree!?

(really go buy my book because this
is the *real* hard stuff)

No one size fits all

Interpret Analytics (clicks,
conversions, etc)

Interpret User Testing
(classic judgment lists)

Takeaway: "Interpret" in
both cases takes domain
expertise

Consumer-facing Knowledge-Mgmt

Challenges

Less depth into "why"
behind keywords

Poor Info Need
differentiation

Cost:
Infrastructure/code for
analytics

Challenges

Less data, low Statistical
significance

Complex info needs

Cost: time consuming,
paying experts, experts
don't have time

Lesson 2: Grade
Consistency

OpenSource Connections Blog Example

- 4 -- article written on keyword topic within last year
- 3 -- article written on topic within last 5 years OR

adjacent topic in last year
- 2 -- adjacent topic more than a year old
- 1 -- not relevant
- 0 -- opposite meaning of keywordsOSC's blog has at best a "2" for

the keyword "enterprise service
bus" (because we have some old
Apache Camel articles)

Don't make judgment grades
keyword relative!

Notice how a global sense of what a "4" is
means easier to perform regression to predict
the "4s" from many examples

© OpenSource Connections, 2017

Lesson 3:What should we optimize
for?

Precision@n - good stuff near top!

NDCG@n - close to your best results

ERR@n - trust perception scanning results

No position bias

Your best might stink!

Users don't realize
there's better out there

Which should we optimize for?
Yes.

Lesson 4: Accuracy vs Speed

When your training infra is... But your search infra is handling….

(big lumbering pile of dedicated compute) (less time per 'search requests')

Lesson 5: Model
Selection?

Matters *less* than you think

Linear Models: (aka optimizing "boosts")
simple use cases, doesn't get "nuance"

Gradient Boosting/SVM/Random Forest:
personal experience/preference how much
you can understand/debug the model?

Generally: Garbage In/Garbage Out!

© OpenSource Connections, 2017

Multiple Models?

Prec@500 NDCG@50 ERR@10

Simple/Fast Model:
Crowd top 500 w/
'good stuff'

Optimize best first First page trustworthy
very accurate but
slow

Lesson 6:
Quality/Accuracy

- Separate test and training data

- With complex models: I often use simple best
subset selection on small number of features

- Tree-based systems, often a *mix* of features
offers context, so look for best performing mix

- Which combinations features perform best? Did
changing features change relative performance
offline on test data?

Every machine learning
problem can be solved by
adding one more for loop!
(or Spark map job)

Lesson 7: This is *harder*
LTR Team & InfraHand Tuned Team & Infra

EngineersStakeholders

Search Engine

Search
Engine

Training Compute
Stakeholders Engineers

Data Scientists

User
clickstream
data

© OpenSource Connections, 2017

BUT it comes more POOOWER!!
Learning to Rank driven personalized search +
recsys

LTR plugin

LTR for Job
Matching:
The Plan

0. Remember this is an iterative
process

1.Determine how to measure success

● NDCG@10

● ERR@10

1.Determine how to measure success

Don’t forget UX / UI!

2. Establish Baseline Ranking Function

“Best shot” at ranking the top-k before rescoring

example: Gaussian distance & freshness decay,
BM25 similarity, geo radius

2. Establish Baseline Ranking Function

“Real World Considerations”:

● Distance decay wasn’t aggressive enough.

● Freshness decay had the same problem.

● Location facets present interesting edge cases.

2. Establish Baseline Ranking Function

“Real World Considerations”:

● Current thinking is to let baseline ranker handle recall, and
the LTR model to optimize precision.

3. Feature Engineering

● Brand
● Zipcode
● Title
● Description
● Location

Start small!

3. Feature Engineering

Then improve constantly….

3. Feature Engineering

Features need not be “search-y” things!

● Content profiles

● Commute distance as a function of roads or transit

● Market forces (supply + demand, etc)

4. Train Models! (LambdaMART)

grade,keyw ords,docId

4,KFC,7555 # KFC
3,KFC,1370 # Pizza Hut
0,KFC,102947 # Uber
4,M acy’s,1366 # M acy’s
...

< ensem ble>
 < tree id= "1" w eight= "1.0E-4">
 < split>
 < feature> 5< /feature>

 < threshold> 7.53730
 < /threshold>
 < split pos= "left">
...

Data Warehouse

feature values

4. Train Models! (LambdaMART)

Think about combining
latent factor models with
your training set!

Training - “Real world” considerations
● Ranklib Training performance

Macbook:
2.7MM Judgements - 5 hours (max tree depth of 20)

M4.4Xlarge:
30 minutes - (max tree depth of 100)

Training - “Real world” considerations

Data Model Results

Training - “Real world” considerations

Query dependent features at training time vs. query
time.

5. Integrate with an existing
platform?

NO.

5. Integrate with an existing
platform?

6. Profit?

???

6. Profit?

NDCG@10: +20.17%
ERR@10: +37.13%

Model V1: (10 bags, 10 trees, 20 leaves)

Hyperparameters
matter!

6. Profit?

NDCG@10: +30.17% (+10.17%)
ERR@10: +49.06% (+11.93%)

Model V2: (10 bags, 50 trees, 100 leaves)

https://github.com/o19s/elasticsearch-learning-to-rank

Please try it and report bugs!

Questions...

Discount code relsearch

https://github.com/o19s/elasticsearch-learning-to-rank

	Slide 1
	OpenSource Connections
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	The Real Problem
	Solution: Learning to Rank
	Solution: Learning to Rank
	Start w/ Judgment Lists
	Classic Relevance Tuning
	Learning to Rank
	Learning to Rank + ES
	Judgment List -> Training Set
	Training Set -> Model
	Model -> Elasticsearch
	Query w/ Model
	You ought to rescore...
	Y u no just use model?!?
	Lesson 1: Judgments == Hard!
	No one size fits all
	Lesson 2: Grade Consistency
	Which should we optimize for?
	Lesson 4: Accuracy vs Speed
	Lesson 5: Model Selection?
	Multiple Models?
	Lesson 6: Quality/Accuracy
	Lesson 7: This is *harder*
	Slide 33
	LTR for Job Matching: The Plan
	0. Remember this is an iterative process
	Determine how to measure success
	Determine how to measure success
	2. Establish Baseline Ranking Function
	Slide 39
	Slide 40
	3. Feature Engineering
	3. Feature Engineering
	3. Feature Engineering
	4. Train Models! (LambdaMART)
	4. Train Models! (LambdaMART)
	Training - “Real world” considerations
	Training - “Real world” considerations
	Training - “Real world” considerations
	5. Integrate with an existing platform?
	5. Integrate with an existing platform?
	6. Profit?
	6. Profit?
	Hyperparameters matter!
	6. Profit?
	Questions...

