

snagajob We built the Elasticsearch LTR **Plugin!** ...then came the hard part...

Jason Kowalewski Sr. Director, Engineering Snagajob jason.kowalewski@snagajob.com

Doug Turnbull Chief Consultant OpenSource Connections @softwaredoug

OpenSource Connections

- Solr & Elasticsearch Relevance Consultants
- Specialized Search, Recommendations & Information Retrieval

75+ million registered hourly workers LARGEST marketplace for hourly work

5.3 million people hired last year

Query: "mcdonalds in 92801"

Crew Member McDonald's Anaheim, California 92801

0 - 5 miles away

Crew Member

McDonald's Anaheim, California 92801 0 - 5 miles away

Crew Member

McDonald's Anaheim, California 92801 0 - 5 miles away

barista - Store# 05309, BEACH & MCDONALD Starbucks Westminster, California 92683 5 - 10 miles away Updated in the last 30 days

Title Boost, "Freshness" Boost

shift supervisor - Store# 05309, BEACH & MCDONALD Starbucks Westminster, California 92683 5 - 10 miles away

Query: "mcdonalds in 90024"

barista - Store# 05309, BEACH & MCDONALD Starbucks Westminster, California 92683 15 - 20 miles away

Updated in the last 30 days

shift supervisor - Store# 05309, BEACH & MCDONALD Starbucks Westminster, California 92683 15 - 20 miles away

Updated in the last 30 days

Crew Team Member

McDonald's CARSON, California 90746 0 - 5 miles away

Shift Manager

McDonald's CARSON, California 90746 0 - 5 miles away

Department Manager

McDonald's CARSON, California 90746

0 - 5 miles away

Query: "mcdonalds in 11231"

Crew

McDonald's Franchisee BROOKLYN, New York 11231 0 - 5 miles away

Maintenance Person

McDonald's Franchisee BROOKLYN, New York 11231 0 - 5 miles away

Crew Member Day Shifts McDonald's Leonardo, New Jersey 07716 15 - 20 miles away

Crew Member Closing Shift McDonald's Leonardo, New Jersey 07716 15 - 20 miles away

Shift Manager McDonald's Leonardo, New Jersey 07716 15 - 20 miles away

Our Workers don't know what they want.

Query: "part time in 11231"

Babysitter Needed For 2 Children In Brooklyn Care.com Brooklyn, New York 11231 0 - 5 miles away Updated today

Babysitter Needed To Pick Up 3 Year Old From Summer Camp

Care.com Brooklyn, New York 11231 0 - 5 miles away Updated yesterday

Nanny Needed For 2 Children In Brooklyn

Care.com Brooklyn, New York 11231 0 - 5 miles away Updated yesterday

Registered Nurse

Sunrise Senior Living Brooklyn, New York 11201 0 - 5 miles away Updated in the last 2 weeks

Entry Level Tax Preparers

Liberty Tax Service Brooklyn Park, New York 11231 0 - 5 miles away

The Real Problem

Hand-tuned relevance does not work for us.

- Field boosts are complex, and difficult to maintain.
- Users are not often searching with a precise keyword set, yet job decisions are very personal.
- Geography plays an important factor in relevance
- Humans are complicated! Relevance factors are non-linear!

Solution: Learning to Rank

Let our data drive the ranking of an optimal combination of jobs for our workers.

Solution: Learning to Rank

Elasticsearch LTR Plugin v. 0.1

Start w/ Judgment Lists

...

grade,keywords,docId

```
4,Ram bo,7555 # Ram bo
3,Ram bo,1370 # Ram bo III
0,Ram bo,102947 # FirstDaughter
4,Rocky,1366 # Rocky
```


Classic Relevance Tuning

Learning to Rank

Learning to Rank + ES

Set

Features: Logged ES Query Scores

"title": "< < keyw ord> > "

grade,keywords,docId

4,Ram bo,7555 # Ram bo 3,Ram bo,1370 # Ram bo III 0,Ram bo,102947 # FirstDaughter 4,Rocky,1366 # Rocky grade,queryId,titleScore,bodyScore

"query":{

"m atch":{

4 q id :1 1:0.5 2:24.4 3 q id :1 1:0.76 2:12 0 q id :1 1:10 2:947 4 q id :2 1:4 2:59

...

...

Ln 1, Col 1

INS

:59

Model -> Elasticsearch

= 256

1">

e> 2 </feature> old> 18.371618 </threshold> pos="left"> <feature> 2 </feature> <threshold> 13.8917055 </threshold> <split pos="left"> <feature> 1 </feature> <threshold> 0.0 </threshold> <split pos="left"> <output> -2.0 </output> </split> <split pos="right"> <output> -2.0 </output> </split> -lanlit. Text 🔻 Tab Width: 8 🔻 Ln 1, Col 1 INS **Plugin Functionality 1**: "ranklib" scripting language for specifying LTR models:

POST _scripts/ranklib/dougs_model

"script": "## LambdaMART\n## No. of trees = 1\n## No. of leaves = 10\n## No. of threshold candidates = 256\n## Learning rate = 0.1\n## Stop early = 100\n\n<ensemble>\n <tree id=\"1\" weight=\"0.1\">\n <split>\n <feature> 1 </feature>\n <threshold> 0.45867884 </threshold>\n <split pos=\"left\">\n <feature> 1 </feature>\n <threshold> 0.0 </threshold>\n <split pos=\"left\">\n <output> -2.0 </output>\n

. . . .

ł

Query w/ Model

Plugin Functionality 1: "ranklib" scripting language for specifying LTR models:

POST_scripts/ranklib/dougs_m odel

{

"script": "## Lam bdaM ART\n## a No.of trees = 1\n## No.of leaves = 10\n## No.of threshold candidates = 256\n## Learning rate = 0.1\n## Stop early = 100\n\n< ensem ble> \n < tree id = \"1\" weight= \"0.1\"> \n < split> \n < feature> 1 < /feature> \n < threshold> 0.45867884 < /threshold> \n < split pos= \"left\"> \n < feature> 1 < /feature> \n < threshold> \n < split pos= \"left\"> \n < feature> 1 < /feature> \n < threshold> 0.0 < /threshold> \n < split pos= \"left\"> \n < output> -2.0 < /output> \n

Plugin Functionality 2: "ltr" query that executes a model

You ought to rescore...

unctionality 2: "Itr" query that a model

```
/movie/_search
': {
r": {
"model": {
"stored": "dougs_model"
"features": [
  {
     "match": {
        "title": "rocky"
     }
  },
     "multi_match": {
        "query": "rocky".
```


Y u no just use model?!?

Problems w/ just model:

- **<u>Performance</u>**: search engines can prefilter what models score
- <u>Query-dependent features</u>: many features depend on keyword (i.e TF*IDF on certain fields) ~ "signals"
- **Business Rules:** influencing ranking beyond user relevance
- **Functionality:** facets, paging, grouping, spell checking, autocomplete, etc etc...

Lesson 1: Judgments == Hard!

Who defines this?

- Domain Experts?
- User analytics?
- Testing w/ Users?
- Devs?
- Sue in marketing?
- HiPPO (highest paid person's opinion?)

Do all these people agree!?

(really go buy my book because this is the *real* hard stuff)

No one size fits all

Consumer-facing

Interpret Analytics (clicks, conversions, etc)

Challenges

Less depth into "why" behind keywords

Poor Info Need differentiation

Cost: Infrastructure/code for analytics <u>Takeaway:</u> "Interpret" in **both** cases takes domain expertise

Knowledge-Mgmt

Interpret User Testing (classic judgment lists)

<u>Challenges</u>

Less data, low Statistical significance

Complex info needs

Cost: time consuming, paying experts, experts don't have time

Lesson 2: Grade Consistency

Don't make judgment grades keyword relative!

OSC's blog has at best a "2" for the keyword "enterprise service bus" (because we have some old Apache Camel articles) OpenSource Connections Blog Example

- 4 -- article written on keyword topic within last year
- 3 -- article written on topic within last 5 years OR adjacent topic in last year
 - 2 -- adjacent topic more than a year old
- 1 -- not relevant
- 0 -- opposite meaning of keywords

Notice how a global sense of what a "4" is means easier to perform regression to predict the "4s" from many examples

Lesson 3:What should for?

Which should we optimize for?

Yes.

Lesson 4: Accuracy vs Speed

When your training infra is...

(big lumbering pile of dedicated compute)

But your search infra is handling....

(less time per 'search requests')

Lesson 5: Model Selection?

Matters *less* than you think

Linear Models: (aka optimizing "boosts") simple use cases, doesn't get "nuance"

OpenSource Connections

<u>Gradient Boosting/SVM/Random Forest</u>: personal experience/preference how much you can understand/debug the model?

Generally: Garbage In/Garbage Out!

Multiple Models?

Lesson 6: Quality/Accuracy

- Separate test and training data
- With complex models: I often use simple best subset selection on small number of features
- Tree-based systems, often a *mix* of features offers context, so look for best performing mix
- Which combinations features perform best? Did changing features change relative performance offline on test data?

Every machine learning problem can be solved by adding one more for loop! (or Spark map job)

Lesson 7: This is *harder*

BUT it comes more POOOWER!! (Source Connections Learning to Rank driven personalized search +

LTR for Job Matching: **The Plan**

0. Remember this is an iterative process

1.Determine how to measure success

• NDCG@10

• ERR@10

1.Determine how to measure success

Don't forget UX / UI!

2. Establish Baseline Ranking Function

"Best shot" at ranking the top-k before rescoring

example: Gaussian distance & freshness decay, BM25 similarity, geo radius

2. Establish Baseline Ranking Function

"Real World Considerations":

- Distance decay wasn't aggressive enough.
- Freshness decay had the same problem.
- Location facets present interesting edge cases.

2. Establish Baseline Ranking Function

"Real World Considerations":

• Current thinking is to let baseline ranker handle recall, and the LTR model to optimize precision.

3. Feature Engineering

Start small!

- Brand
- Zipcode
- Title
- Description
- Location

3. Feature Engineering

Then improve constantly....

3. Feature Engineering

Features need not be "search-y" things!

- Content profiles
- Commute distance as a function of roads or transit
- Market forces (supply + demand, etc)

4. Train Models! (LambdaMART)

4. Train Models! (LambdaMART)

Think about combining latent factor models with your training set!

Training - "Real world" considerations

• Ranklib Training performance

Macbook:

2.7MM Judgements - 5 hours (max tree depth of 20)

M4.4Xlarge: 30 minutes - (max tree depth of 100)

Training - "Real world" considerations

Data

Model

Kun no

Results

Training - "Real world" considerations

Query dependent features at training time vs. query time.

5. Integrate with an existing platform?

NO.

5. Integrate with an existing platform?

ENGINEERING

6. Profit?

???

6. Profit?

Model V1: (10 bags, 10 trees, 20 leaves)

NDCG@10: **+20.17%** ERR@10: **+37.13%**

Hyperparameters matter!

6. Profit?

Model V2: (10 bags, 50 trees, 100 leaves)

NDCG@10: +30.17% (+10.17%) ERR@10: +49.06% (+11.93%)

Questions...

https://github.com/o19s/elasticsearch-learning-to-ran

Please try it and report bugs!

Discount code relsearch

