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We built the Elasticsearch LTR
Plugin!
...then came the hard part...
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OpenSource Connectlons

- Solr & Elasticsearch Relevance
Consultants

- Specialized Search,
Recommendations &
Information Retrieval
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million
monthly job
applications

)

<t

registered hourly workers

LARGEST

marketplace for hourly work

5.3 million

people hired last year

SHATas

Wﬂwﬂﬂ“ 300,000

employer locations
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] Crew Member
Query: “mcdonalds in 92801” McDonald's

Anaheim, California 92801
0 - 5 miles away

Crew Member
McDonald's

Anaheim, California 92801
0 - 5 miles away

Crew Member
McDonald's

Anaheim, California 92801
0 - 5 miles away

barista - Store# 05309, BEACH § MCDONALD
Starbucks

Westminster, California 92683

5-10 miles away

Title Boost, Updated in the last 30 days

“Freshness” Boost

shift supervisor - Store# 05309, BEACH &§ MCDONALD
Starbucks

Westminster, California 92683

5 - 10 miles away



barista - Store# 05309, BEACH § MCDONALD

Query: “mcdonalds in 90024” Starbucks
Westminster, California 92683
15 - 20 miles away

Updated in the last 30 days

shift supervisor - Store# 05309, BEACH &§ MCDONALD

Starbucks
Westminster, California 92683
15 - 20 miles away

Updated in the last 30 days

Crew Teamm Member
McDonald's
CARSON, California 90746

0 - 5 miles away

Shift Manager
McDonald's

CARSON, California 90746
0 - 5 miles away

Department Manager
McDonald's
CARSON, California 90746

0N .5 milaec awav



Query: “mcdonalds in 11231”

111

Crew

McDonald's Franchisee
BROOKLYN, New York 11231
0 - 5 miles away

Maintenance Person
McDonald's Franchisee
BROOKLYN, New York 11231
0 - 5 miles away

Crew Member Day Shifts
McDonald's

Leonardo, New Jersey 07716
15 - 20 miles away

Crew Member Closing Shift
McDonald's

Leonardo, New Jersey 07716

15 - 20 miles away

Shift Manager
McDonald's

Leonardo, New Jersey 07716
15 - 20 miles away
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Our Workers don’t know what they want.

% of Total Keyword Searches;7-Day Count
20%

15%

10%

5%

3% 20 . 1% 1% 19, 19,

I ¢ of Last 7 Days



Babysitter Needed For 2 Children In Brooklyn

Query: “part time in 11231” Care.com
Brooklyn, New York 11231
0- 5 miles away

Updated today

Babysitter Needed To Pick Up 3 Year Old From Summer Camp

Care.com

Brooklyn, New York 11231
0 -5 miles away

Updated yesterday

Nanny Needed For 2 Children In Brooklyn
Care.com

Brooklyn, New York 11231

0- 5 miles away

Updated yesterday

Registered Nurse
Sunrise Senior Living
Brooklyn, New York 11201
0- 5 miles away

Updated in the last 2 weeks

Entry Level Tax Preparers
Liberty Tax Service

Brooklyn Park, New York 11231
0 -5 miles away



The Real Problem

Hand-tuned relevance does not work for us.

® Field boosts are complex, and difficult to maintain.

® Users are not often searching with a precise keyword set, yet job decisions
are very personal.

® Geography plays an important factor in relevance
snagajob

® Humans are complicated! Relevance factors are non-linear! ENGINEERING



Solution: Learning to Rank

Let our data drive the ranking of an
optimal combination of jobs for our
workers.

snagajob
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Solution: Learning to Rank
snagajob IO IERE e
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Start w/ Judgment Lists

Quality of doc
per query

grade keywords,docH

4 Ram bo,7555 # Ram bo

3 Ram bo,1370 # Ram bo III

0 Ram bo,102947 # FirstDaughter
4 Rocky, 1366 # Rocky
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Classic Relevance Tuning

grade keywords,docH

4 Ram bo,7555 # Ram bo

3 Ram bo,1370 # Ram bo III

0, Ram bo,102947 # FirstDaughter
4 Rocky,1366 # Rocky
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Learning to Rank

grade keywords,docH

4 Ram bo,7555 # Ram bo
3 Ram bo,1370 # Ram bo III

0, Ram bo,102947 # FirstDaughter
4 Rocky,1366 # Rocky
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Learning to Rank + ES

grade keywords,docH

4 Ram bo,7555 # Ram bo
3 Ram bo,1370 # Ram bo II

0 Ram bo,102947 # FirstDa
4 Rocky,1366 # Rocky




Connections

JUQUYITICTIL LISL -~ 3) (nsause
Set

grade keywords,docH grade ,queryH ,titleScore bodyScore

4 Ram bo,7555 # Ram bo

3 Ram bo,1370 # Ram bo IIT

O Ram bo,102947 # FirstDaughter
4 Rocky,1366 # Rocky

Features: Logged ES Query Scores
{
Ilq ue ry 1} : {
"match": {
"title": "< < keyword>> "
¥
}

1



O OpenSource
9 Connections

Training Set -> Model

## LambdaMART

## No. of trees = 1000
## No. of leaves = 10
g
#
#

No. of threshold candidates = 256

Learning rate = 0.1 .
Stop early = 100 Tltle score

HtleScore bodyScore

Ranklib or ensemble>

<tree id="1" weight="0.1"=>
other tool <split>
<feature> 2 </feature=
<thresholdr 18.371618 </threshold>
<split pog="left">

pos="left">|
<feature> 1 </feature>
<threshold> 0.0 </threshold=
<split pos="left"=>
<output> -2.0 </output=>

Features: Logged ES Query Scores Body Score </split>
<split pos="right">
{ <output> -2.0 </output>
] 1 </split=>
q ue ry . { Plain Tt;):t": ;ab width: 8 + Ln 1, Col1 * INS

"match": {
"title": "<<keyword>>"
}
}
}
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Model -> Elasticsearch

1"=

e> 2 </feature>
old> 18.371618 </threshold=
pos="left">
<feature> 2 </feature>
<threshold> 13.8917055 </threshold=
<split pos="left">
<feature> 1 </feature=
<threshold> 0.0 </threshold>
<split pos="left">
<output> -2.0 </output>

</split>
<split pos="right"=>

<output> -2.0 </output>
</split>

P, R

Text * TabWidth:8 « Ln1,Col1 - INS

Plugin Functionality 1: "ranklib" scripting
language for specifying LTR models:

POST _scripts/ranklib/dougs_model
{

"script": "## LambdaMART\n## No. of trees
= 1\n## No. of leaves = 10\n## No. of
threshold candidates = 256\n## Learning rate
= 0.1\n## Stop early = 100\n\n<ensemble>\n
<tree id=\"1\" weight=\"0.1\">\n <split>\n
<feature> 1 </feature>\n <threshold>
0.45867884 </threshold>\n <split
pos=\"left\">\n <feature> 1 </feature>\n
<threshold> 0.0 </threshold>\n <split
pos=\"left\">\n  <output>-2.0 </output>\n
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Query w/ Model

Plugin Functionality 1: "ranklib" scripting
language for specifying LTR models:

POST scripts/ranklb/dougs m odel
{

"script": "## Lam bdaM ART\n##a No.of
trees = 1\n## No.ofleaves= 10\n##
No.ofthreshold candidates = 256 \n# #
Leaming rate = 0.1\n## Stop early =
100\n\n<ensem ble>\n < tree d=\"1\"
weight=\"0.1\">\n <spli>\n < feature>
1l < ffeature>\n <threshold>
045867884 < /threshold>\n < split
pos=\"eft\'>\n <feature> 1
< /ffrature>\n <threshold> 0.0
< /threshold>\ <splitpos=\"left\">\n
<outputs 2.0 <output>\n

Plugin Functionality 2: "ltr" query that
executes a model

20 POST tmdb/movie/ search
21~ {

22 ~ "query": {
23 et { Model we

24 + "model"s { " |ust stored

25 "stored": "dougs_model"
26 ~ s

27 = "features": [

28 - {

29 - "match": {

30 "title": "rocky"
il o

Feature "1" in
training data

32 - ,
33~ Feature "2" in

34 ~ "multi_match": { tralnlng data
35 "query": "rocky",
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You ought to rescore...

unctionality 2: "ltr" query that
, a model 55  POST tmdb/movie/_search > f

56+ {

/movie/ search
57 - "query": {

: { 58~ mateht: —— Baseline query
e 59 " all": "rocky"
'model": {
"stored": "dougs_model" 1, Rescore tOp
i 62~  "rescore": { ,,//”//// 500
'features": [ 63 "window_size": 500,
{ 64 - "query":
"match": { 65 - E "r:scofequery”i{l/ Same |t|’ query
"title": "rocky" 66 ~ "' |
¥ 67 ~ "model": {
1’ "stored": "dougs_model"

¥,

"features": [

"multi_match": {

"query": "rocky",
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Y U no just use model?!?

(do you need Solr/Elasticsearch here!?)

Problems w/ just model:
- Performance: search engines can prefilter what models score
- Query-dependent features: many features depend on keyword (i.e TF*IDF on
certain fields) ~ "signals"
- Business Rules: influencing ranking beyond user relevance
- Functionality: facets, paging, grouping, spell checking, autocomplete, etc etc...
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Lesson 1: Judgments == Hard!

Content Who defines this?

Search curator

; ) : 5
Document engineer Stapkaer?r?ggfsl Domain Experts?”

store

- User analytics?

- Testing w/ Users?

- Devs?

- Sue in marketing?

- HIPPO (highest paid person's
opinion?)

Do all these people agree!?

(really go buy my book because this
Is the *real* hard stuff)
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No one size fits all

Consumer-facing Knowledge-Mgmt
< >
Interpret Analytics (clicks, Interpret User Testing
conversions, etc) (classic judgment lists)
Challenges Challenges

_ Takeaway: "Interpret” in -
Less depth into "why" both cases takes domain Less data, low Statistical
behind keywords expertise significance
Poor Info Need Complex info needs
differentiation " 1

h-’ Cost: time consuming,

Cost: A % paying experts, experts

Infrastructure/code for don't have time
analytics



Lesson 2: Grade Q) &
Consistency

Don't make judgment grades OpenSource Connections Blog Example
4 -- article written on keyword topic within last year
3 -- article written on topic within last 5 years OR

keyword relative! \
adjacent topic in last year

/ - 2 -- adjacent topic more than a year old
- 1 -- not relevant

- 0 -- opposite meaning of keywords

OSC's blog has at best a "2" for
the keyword "enterprise service
bus" (because we have some old

Apache Camel articles) \
Notice how a global sense of what a "4" is

means easier to perform regression to predict
the "4s" from many examples



Lesson 3:What should Dt
for?

No position bias

[
L

Precision@n - good stuff near top!
Your best might stink!

NDCG@n - close to your best results

ERR@n

- trust perception scanning results Users don't realize
there's better out there

Which should we optimize for?

Yes.

© OpenSource Connections, 2017






Lesson 5: Model %) T

Selection?

Matters *less* than you think

Linear Models: (aka optimizing "boosts")
simple use cases, doesn't get "nuance"

Gradient Boosting/SVM/Random Forest:
personal experience/preference how much
you can understand/debug the model?

Generally: Garbage In/Garbage Out!
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Multiple Models?

Prec@500 NDCG@50 ERR@10

Simple/Fast Model:

Crowd top 500 w/ Optimize best first First page trustworthy
‘good stuff very accurate but
slow

© OpenSource Connections, 2017



Lesson 6;:
Quality/Accuracy

- Separate test and training data

- With complex models: | often use simple best
subset selection on small number of features

- Tree-based systems, often a *mix* of features
offers context, so look for best performing mix

- Which combinations features perform best? Did
changing features change relative performance
offline on test data?

O OpenSource
9 Connections

Every machine learning
problem can be solved by

adding one more for loop!
(or Spark map job)




Lesson 7: This Is *harder*

Hand Tuned Team & Infra LTR Team & Infra

oA
30k

_
&

7
s




BUT it comes more POOOWER!! Q) Encdions
Learning to Rank driven personalized search +
recsys

4"[4

Q- Soll
A, elasticsearch

© OpenSource Connections, 2017



LTR for Job
Matching:
The Plan

EEEEEEEEEEE



0. Remember this is an iterative
process

snagajob

ENGINEERING



1l.Determine how to measure success

® NDCG@10

® ERR@10

snagajob

ENGINEERING



1l.Determine how to measure success

Don’t forget UX / Ul!

snagajob
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2. Establish Baseline Ranking Function

“Best shot” at ranking the top-k before rescoring

example: Gaussian distance & freshness decay,
BM25 similarity, geo radius

snagajob
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2. Establish Baseline Ranking Function

‘“Real World Considerations”:

® Distance decay wasn’t aggressive enough.
® Freshness decay had the same problem.

® [ ocation facets present interesting edge cases.
snagajob
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2. Establish Baseline Ranking Function

‘“Real World Considerations”:

® Current thinking is to let baseline ranker handle recall, and
the LTR model to optimize precision.

snagajob
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3. Feature Engineering

Start small!

® Brand

® Zipcode

® Title

® Description
® [ ocation

snagajob

ENGINEERING



3. Feature Engineering

Then improve constantly....

snagajob

ENGINEERING



3. Feature Engineering
Features need not be “search-y” things!

® Content profiles

® Commute distance as a function of roads or transit

® Market forces (supply + demand, etc)

snagajob

ENGINEERING



4. Train Models! (LambdaMART)

grade keywords,docH
Data Warehouse
APACHE 4 KFC,7555 # KFC
—> —  » 3 KFC,1370 # Pizza Hut
pQ 0 KFC,102947 # Uber

4 Macy’'s, 1366 # Macy's
<ensem ble>

<tree U="1"weght="1.0E4">
< sp lit>
< < feature>5< ffeature> y
- <threshold> 7 53730
vi < fthreshod>
____,-/ <split pos= "l ft">




4. Train Models! (LambdaMART)

Think about combining
latent factor models with
your training set!




Training - “Real world” considerations
® Ranklib Training performance

Macbook:
2. 7MM Judgements - 5 hours (max tree depth of 20)

M4.4Xlarge:
30 minutes - (max tree depth of 100)

snagajob
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Training - “Real world” considerations

Results .
shagajob

ENGINEERING

Data



Training - “Real world” considerations

Query dependent features at training time vs. query
time.

snagajob
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5. Integrate with an existing
platform?

NO.

snagajob
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5. Integrate with an existing
platform?

Y

*—Sparch Events Proxy ABC Manager

( < Aszsigned Test Group™ |
MDCG, 5% Traffic ‘ La& Traffic
ERR Analyze /

Tung

Learning To Rank Legacy Platform

snagajob
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6. Profit?

2707

snagajob

ENGINEERI NG



6. Profit?

Model V1: (10 bags, 10 trees, 20 leaves)

NDCG@10: +20.17%
ERR@10: +37.13%

snagajob

ENGINEERIN G



Hyperparameters
matter!



6. Profit?

Model V2: (10 bags, 50 trees, 100 leaves)

NDCG@10: +30.17% (+10.17%)
ERR@10: +49.06% (+11.93%)

snagajob

ENGINEERIN G
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Questions...

Please try it and report bugs!

Doug Turnbull =;.../
John Berryman -

Discount code relsearch

N+ SOL ENTERPRISE Y :
mattersQ SEbRCENE DATA W&LD E”ter””segfrﬂfﬁﬂ Strata elas’ncm

BIGCONF MAKING DATA WORK


https://github.com/o19s/elasticsearch-learning-to-rank
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