
Experiences Running

Apache Flink at

Very Large Scale

@StephanEwen

Berlin Buzzwords, 2017

1



Some large scale use cases

2



3

 Various use cases
• Example: Stream ingestion, route events to Kafka, ES, Hive

• Example: Model user interaction sessions

 Mix of stateless / moderate state / large state

 Stream Processing as a Service
• Launching, monitoring, scaling, updating

@



4

@



5

 Blink based on Flink

 A core system in Alibaba Search

• Machine learning, search, recommendations

• A/B testing of search algorithms

• Online feature updates to boost conversion rate

 Alibaba is a major contributor to Flink

 Contributing many changes back to open source

@



@

6



7

@

Social network implemented using event sourcing 

and CQRS (Command Query Responsibility 

Segregation) on Kafka/Flink/Elasticsearch/Redis

More: https://data-artisans.com/blog/drivetribe-cqrs-apache-flink



How we learned to view Flink 

through its users
8



System for Event–driven Applications

9

Event-driven

Applications

Stream Processing

Batch Processing

Stateful, event-driven,

event-time-aware processing

(event sourcing, CQRS, …)

(streams, windows, …)

(data sets)



Event Sourcing + Memory Image

10

event log

persists events

(temporarily)

event /

command

Process

main memory

update local

variables/structures

periodically snapshot 

the memory



Event Sourcing + Memory Image

11

Recovery: Restore snapshot and replay events 

since snapshot

event log

persists events

(temporarily)
Process



Distributed Memory Image

12

Distributed application, many memory images.

Snapshots are all consistent together.



Stateful Event & Stream Processing

13

Scalable embedded state 

Access at memory speed &

scales with parallel operators



Stateful Event & Stream Processing

14

Re-load state

Reset positions

in input streams

Rolling back computation

Re-processing



Stateful Event & Stream Processing

15

Restore to different

programs

Bugfixes, Upgrades, A/B testing, etc



Compute, State, and Storage

16

Classic tiered architecture Streaming architecture

database

layer

compute

layer

application state

+ backup

compute

+

stream storage

and

snapshot storage

(backup)

application state



System for Event–driven Applications

17

Event-driven

Applications

Stream Processing

Batch Processing

Stateful, event-driven,

event-time-aware processing

(event sourcing, CQRS, …)

(streams, windows, …)

(data sets)



Apache Flink's Layered APIs

18

Process Function (events, state, time)

DataStream API (streams, windows)

Table API (dynamic tables)

Stream SQL

Stream- &

Batch Processing

Analytics

Stateful

Event-Driven

Applications



Lessons Learned from Running 

Flink
19



20

The event/stream pipeline 

generally just works





Interacting with the environment

 Dependency conflicts are amongst the biggest problems
• Next versions trying to radically reduce dependencies

• Make Hadoop an optional dependency

• Rework shading techniques

 The deployment ecosystem is crazy complex
• Yarn, Mesos & DC/OS, Docker & K8s, standalone, …

• Containers and overlay networks are tricky

• Authorization and authentication ecosystem complex it itself

• Continuous work to improve integration

21



External systems

 Dependency on any external system eventually causes 

downtime

• Mainly: HDFS / S3 / NFS / … for checkpoints

 We plan to reduce dependency on those more and more in 

the next versions

22



Type Serialization

 Type serialization is a harder problem in streaming than in 
batch
• The data structure updates require more serialization

• Types are often more complex than in batch

 State lives long and across jobs
• Requires to "version" state and serializers

• Requires a "schema evolution" path

• Much enhanced support in Flink 1.3, more still to come

23



24

…is the most important part of

running a large scale Flink application

Robustly checkpointing…



Review: Checkpoints

25

Trigger checkpoint Inject checkpoint barrier

stateful

operation

source /

transform



Review: Checkpoints

26

Take state snapshot Trigger state

snapshot

stateful

operation

source /

transform



Review: Checkpoint Alignment

27

begin aligning

checkpoint
barrier n

xy

operator

aligning

ab

operator

23 1

input buffer

y



Review: Checkpoint Alignment

28

bc

operator

23 1

emit barrier n

c

operator

23 1

input buffer

continuecheckpoint

4 4

a



Understanding Checkpoints

29



Understanding Checkpoints

30

How well behaves 

the alignment?

(lower is better)

How long do

snapshots take?

delay =

end_to_end – sync – async



Understanding Checkpoints

31

How well behaves 

the alignment?

(lower is better)

How long do

snapshots take?

delay =

end_to_end – sync – async

long delay = under backpressure

under constant backpressure

means the application is

under provisioned

too long means

 too much state

per node

 snapshot store cannot

keep up with load

(low bandwidth)

vastly improved with

incremental checkpoints in Flink 1.3

most important

robustness metric



Heavy alignments

 A heavy alignment typically happens at some point

 Different load on different paths

 Skewed window emission

(lots of data on one node)

 Stall of one operator on the path

34



Heavy alignments

 A heavy alignment typically happens at some point

 Different load on different paths

 Skewed window emission

(lots of data on one node)

 Stall of one operator on the path

35



Heavy alignments

 A heavy alignment typically happens at some point

 Different load on different paths

 Skewed window emission

(lots of data on one node)

 Stall of one operator on the path

36

GC stall



Catching up from heavy alignments 

 Operators that did heavy alignment need to catch up again

 Otherwise, next checkpoint will have a

heavy alignment as well 

37

operator

bc

operator

23 14

a

consumed first after

checkpoint completed

bc a



Catching up from heavy alignments 

 Giving the computation time to catch up before starting the 

next checkpoint

• Set the min-time-between-checkpoints

• Ideas to change checkpoints to policy based (spend x% of capacity 

on checkpoints)

 Asynchronous checkpoints mitigate most of problem

• Very short stalls in the pipelines means shorter alignment phase

• Catch up already happens concurrently to state materialization

38



Asynchrony of different state types

40

State Flink 1.2 Flink 1.3 Flink 1.4

Keyed state

RocksDB ✔ ✔ ✔

Keyed State

on heap
✘ (✔)

(hidden in 1.2.1)
✔ ✔

Timers ✘ ✘ ✔ (PR)

Operator State ✘ ✔ ✔



When to use which state backend?

41

Async. Heap/FS RocksDB

State ≥ Memory ?

Complex Objects?

(expensive serialization)

high data rate?

no yes

yes no
yes

no
a bit

simplified



42



We are hiring!

data-artisans.com/careers



44

Backup Slides



Avoiding DDOSing other systems

45



Exceeding FS request capacity

 Job size: multiple 1000 operators

 Checkpoint interval: few secs

 State size: KBs per operator, 1000 of state chunks

 Via the S3 FS (from Hadoop), writes ensure "directory" 

exists, 2 HEAD requests

 Symptom: S3 blocked off connections after exceeding 

1000s HEAD requests / sec

46



Reducing FS stress for small state

47

JobManager TaskManager

Checkpoint

Coordinator

Task

TaskManager

Task

TaskTask

Root Checkpoint File

(metadata) checkpoint data

files

Fs/RocksDB state backend

for most states



Reducing FS stress for small state

48

JobManager TaskManager

Checkpoint

Coordinator

Task

TaskManager

Task

TaskTask

checkpoint data

directly in metadata file

Fs/RocksDB state backend

for small states

ack+data

Increasing small state

threshold reduces number

of files (default: 1KB)



Distributed Coordination

49



Deploying Tasks

50

Happens during initial deployment and recovery

JobManager TaskManager

Akka / RPC Akka / RPC

Blob Server Blob Server

Deployment RPC Call

Contains

- Job Configuration

- Task Code and Objects

- Recover State Handle

- Correlation IDs



Deploying Tasks

51

Happens during initial deployment and recovery

JobManager TaskManager

Akka / RPC Akka / RPC

Blob Server Blob Server

Deployment RPC Call

Contains

- Job Configuration

- Task Code and Objects

- Recover State Handle

- Correlation IDs

KBs

up to MBs

KBs

few bytes



RPC volume during deployment

52

(back of the napkin calculation)

number of

tasks

2 MB

parallelism
size of task

objects

100010 x x

x x

=

= RPC volume

20 GB

~20 seconds on full 10 GBits/s net 

> 1 min with avg. of 3 GBits/s net 

> 3 min with avg. of 1GBs net 



Timeouts and Failure detection

53

~20 seconds on full 10 GBits/s net 

> 1 min with avg. of 3 GBits/s net 

> 3 min with avg. of 1GBs net 

Default RPC timeout: 10 secs
default settings lead to failed

deployments with RPC timeouts

Solution: Increase RPC timeout

Caveat: Increasing the timeout makes failure detection slower

Future: Reduce RPC load (next slides)



Dissecting the RPC messages

54

Message part Size

Variance across 

subtasks

and redeploys

Job Configuration KBs constant

Task Code and Objects up to MBs constant

Recover State Handle KBs variable

Correlation IDs few bytes variable



Upcoming: Deploying Tasks

55

Out-of-band transfer and caching of

large and constant message parts

JobManager TaskManager

Akka / RPC Akka / RPC

Blob Server Blob Cache

(1) Deployment RPC Call

(Recover State Handle,

Correlation IDs, BLOB pointers)

(2) Download and cache BLOBs

(Job Config, Task Objects) MBs

KBs



Layers of abstraction

56

Ogres have 

layers

So do 

squirrels



Apache Flink's Layered APIs

57

Process Function (events, state, time)

DataStream API (streams, windows)

Table API (dynamic tables)

Stream SQL

Stream- &

Batch Processing

Analytics

Stateful

Event-Driven

Applications



Process Function

58

class MyFunction extends ProcessFunction[MyEvent, Result] {

// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(…)

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {
// handle callback when event-/processing- time instant is reached

}
} 



Data Stream API

59

val lines: DataStream[String] = env.addSource(
new FlinkKafkaConsumer09<>(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))



Table API & Stream SQL

60



Events, State, Time, and Snapshots

61



Events, State, Time, and Snapshots

62

f(a,b)

Event-driven function

executed distributedly



Events, State, Time, and Snapshots

63

f(a,b)

Maintain fault tolerant local state similar to

any normal application
Main memory +

out of core (for maps)



Events, State, Time, and Snapshots

64

f(a,b)

wall clock

event time clock

Access and react to

notions of time and progress,

handle out-of-order events



Events, State, Time, and Snapshots

65

f(a,b)

wall clock

event time clock

Snapshot point-in-time

view for recovery,

rollback, cloning,

versioning, etc.



Stateful Event & Stream Processing

66

Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window

(state read/write)
Sink



Stateful Event & Stream Processing

67

Source
Filter /

Transform

State

read/write
Sink



Stateful Event & Stream Processing

68

Scalable embedded state 

Access at memory speed &

scales with parallel operators



Stateful Event & Stream Processing

69

Re-load state

Reset positions

in input streams

Rolling back computation

Re-processing



Stateful Event & Stream Processing

70

Restore to different

programs

Bugfixes, Upgrades, A/B testing, etc



"Classical" versus

Streaming Architecture
71



Compute, State, and Storage

72

Classic tiered architecture Streaming architecture

database

layer

compute

layer

application state

+ backup

compute

+

stream storage

and

snapshot storage

(backup)

application state



Performance

73

synchronous reads/writes

across tier boundary

asynchronous writes

of large blobs

all modifications

are local

Classic tiered architecture Streaming architecture



Consistency

74

distributed transactions

at scale typically

at-most / at-least once

exactly once

per state

=1 =1snapshot consistency 

across states

Classic tiered architecture Streaming architecture



Scaling a Service

75

separately provision additional

database capacity

provision compute

and state together

Classic tiered architecture Streaming architecture

provision compute



Rolling out a new Service

76

provision a new database

(or add capacity to an existing one)

provision compute

and state together

simply occupies some

additional backup space

Classic tiered architecture Streaming architecture



Repair External State

77

Streaming architecture

events

live application external state

wrong results

backed up data

(HDFS, S3, etc.)



Repair External State

78

Streaming architecture

live application external state

overwrite

with correct results

backed up data

(HDFS, S3, etc.)
application on backup input

events



Repair External State

79

Streaming architecture

live application external state

overwrite

with correct results

backed up date

(HDFS, S3, etc.)

Each application doubles as

a batch job!

application on backup input

events


