
A BIG DATA
STREAMING RECIPE
WHAT TO CONSIDER WHEN BUILDING
A REAL TIME BIG DATA APPLICATION

 / Konstantin Gregor konstantin.gregor@tngtech.com

http://hakim.se/
http://twitter.com/hakimel

ABOUT ME
So�ware developer for TNG in Munich
Client in telecommunication business
Mobile phone events (SMS sent, call placed etc)
~5 billion events per day
Deriving statistical insights: e.g. age distribution at an event
Ensuring absolute privacy and anonymity of customers

LET'S COOK

#1INGREDIENT #1:
STREAM PROCESSOR

STREAM PROCESSORS
There are many ...
Each has its own benefits
Thoroughly analyze which features you need!
In this talk, focus lies on

FUNCTIONALITY
Generally provided functions:

map
window
aggregate
...

Framework-specific functionality:
Machine learning
Graph processing
...

APACHE FLINK

Originated at TU Berlin
Written in Java and Scala
Processes records one-at-a-time
APIs: Java, Scala, Python(experimental)
SQL on Streams
New feature: "Queryable state"

HELLO TWITTER IN FLINK
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> tweets = env.addSource(new TwitterSource(authProps));

tweets.flatMap(new JSONParseFlatMap<String, Tuple2<String, Long>>() {
 @Override
 public void flatMap(String tweet, Collector<Tuple2<String, Long>> out)
 try {
 out.collect(new Tuple2<>(getString(tweet, "lang"
 } catch { ... }
 }
 })
 .keyBy(0)
 .timeWindow(Time.seconds(10))
 .sum(1).print();

env.execute("Streaming WordCount Example");

APACHE STORM

Originated at Twitter
Originally in Clojure, now Java
Processes records one-at-a-time
Can be used with any language
Storm SQL

HELLO TWITTER IN STORM (1/2)
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("twitterSpout", new MyTwitterSpout(...), 1);

builder.setBolt("countBolt", new TwitterLanguageCountBolt()
 .withTumblingWindow(new BaseWindowedBolt.Duration(10, TimeUnit.SECONDS)),
 .fieldsGrouping("twitterSpout", new Fields("lang"));

 builder.setBolt("output", new OutputBolt(), 1).localOrShuffleGrouping(

HELLO TWITTER IN STORM (2/2)
class TwitterLanguageCountBolt extends BaseWindowedBolt {
 private OutputCollector collector;
 Map<String, Integer> counts = new HashMap<>();
 ...
 @Override
 public void execute(final TupleWindow tupleWindow) {
 for (final Tuple tuple : tupleWindow.get()) {
 final String lang = tuple.getStringByField("lang"
 Integer count = counts.get(lang);
 if (count == null)
 count = 0;
 count++;
 counts.put(lang, count);
 }

 for (final Map.Entry<String, Integer> langCount : counts.entrySet())
 collector.emit(new Values(langCount.getKey(), langCount.getValue()));
 }

 @Override
 public void declareOutputFields(final OutputFieldsDeclarer declarer)
 declarer.declare(new Fields("lang", "count"));
 }
}

APACHE SPARK STREAMING

Originated at UC Berkeley
Written in Scala
Processes micro-batches
APIs: Java, Scala, Python, R
Also provides "SQL on streams"

HELLO TWITTER IN SPARK
JavaReceiverInputDStream twitterStream = TwitterUtils.createStream(sc, twitterAuth, filters);
twitterStream.map(new Function() {
 @Override
 public String call(Status tweet) throws Exception {
 return tweet.getUser().getLang();
 }
})
 .window(new Duration(10 * 1000))
 .countByValue()
 .print(100);
sc.start();
sc.awaitTermination();

"MASTER"

#2INGREDIENT #2:
SOURCES AND SINKS

SOURCES AND SINKS
Kafka
HDFS
Databases
S3
...

→ A lot is already provided
→ Building custom sinks is usually easy

WHAT TO CONSIDER?
Fault tolerance, i.e. rewindable sources like Kafka (more later)
Data quality, i.e. idempotent sinks like databases (more later)
Decoupling of modules
Latency, i.e. making data quickly available

"MASTER"

SINK

PERSISTENT
SOURCE

#3INGREDIENT #3:
STATEFUL OPERATIONS

WHAT IS STATE?
Stateless Operators: map tweet → language, record
encryption, ...
Stateful Operators: tweet language count, machine learning
model, ...

70

HOW DO WE GET STATE?
Could store it in a variable in the operator
Don't forget: Operators on many machines, but 1 total state
Central "hub" that stores all the state, e.g. a database
What happens when the application crashes?

→ Do we really want to manage that ourselves?

STATE MANAGEMENT: STORM
Need to specifically add state to bolts
Store state in KeyValueState
State backend is Redis
State buffered in memory, periodically checkpointed to Redis

HELLO TWITTER IN STORM (REVISED)
class TwitterLanguageCountBolt extends BaseStatefulWindowedBolt<KeyValueState
 private OutputCollector collector;
 private KeyValueState<String, Long> counts ;

 @Override
 public void initState(KeyValueState<String, Long> state) {
 wordCounts = state;
 }

 @Override
 public void execute(final TupleWindow tupleWindow) {
 //same as before
 }

 @Override
 public void declareOutputFields(final OutputFieldsDeclarer declarer)
 //same as before
 }
}

STATE MANAGEMENT: FLINK
Provided functions ("window", "sum", ...): out-of-the box
Own functions: need to care about state yourself
State is kept in memory (RocksDB allows for "infinite" state)
Periodically checkpointed to HDFS, JobManager, S3, or
RocksDB
Keyed state vs. operator state

STATE MANAGEMENT: SPARK
Every n seconds one program
Operations made on whole RDD
Spark saves "lineage" of RDDs
Too large RDDs can be spilled to disk
Stateful functions provided: updateStateBykey
RDDs and lineage periodically checkpointed to state backend
(HDFS, S3)

time

Text

THINGS WILL GO
WRONG...

#4INGREDIENT #4:
FAILURE TOLERANCE

FAILURE TOLERANCE
State is periodically checkpointed to a persistent backend
Have a persistent, rewindable source

FAULT-TOLERANCE: FLINK
A�er failure:

Restart job
Read checkpointed state
Rewind source (reading offsets are part of the state)
Continue processing

FAULT-TOLERANCE: STORM
A�er Failure:

Restart worker
Read checkpointed state
First node saves backup of records not yet "acked"
(some bolt "ack" automatically, others don't → watch out)
Records not fully acked a�er some time will be resent

FAULT-TOLERANCE: SPARK
A�er failure of a batch:

Read checkpointed lineage (original batch +
transformations)
Recompute failed batch according to lineage
Spark recomputes the failed batch quickly → keep up

"MASTER"

SINK

CHECK-
POINTED

STATE

PERSISTENT
SOURCE

#5
SINGLE POINTS OF FAILURE

© Wookiepedia
(starwars.wikia.com)

"The application is unbreakable! Really!
Well, except for this one little thing, but

that's nothing..."

INGREDIENT #5:
HIGH AVAILABILITY

HIGH AVAILABILITY
You don't want single points of failures
"Masters" manage the program, they are SPOFs
Job Manager (Flink), Nimbus (Storm), Master (Spark)
→ Use Zookeeper framework

← replicated & distributed

"MASTER"

SINK

"MASTER"

ZOOKEEPER

CHECK-
POINTED

STATE

PERSISTENT
SOURCE

#6INGREDIENT #6:
FLOW CONTROL

FLOW CONTROL

BACK PRESSURE
Only let as many records enter as the topology can handle
Needs persistent source
Provided by Storm, Flink, and Spark
Storm & Flink: Buffers of limited size between operators
Spark: Calculate processing rate a�er each batch → rate limit

Note: Back pressure between applications is very hard!

"MASTER"

SINK

"MASTER"

ZOOKEEPER

CHECK-
POINTED

STATE

PERSISTENT
SOURCE

SLOW
DOWN!

SLOW
DOWN!

#7INGREDIENT #7:
DELIVERY GUARANTEES

DATA QUALITY
Delivery guarantees

At most once At least once Exactly once
Past: Lambda-Architecture: Streaming and Batch

Assuming Kafka source: *
Spark Streaming: Micro-batching → exactly once
Flink: Checkpoints → exactly once
Storm: Acking → at least once

*Note: other guarantees on other sources (complicated!)

SOME NOTES ON "EXACTLY ONCE"
Exactly once state or delivery?!
"Exactly once state" possible with Flink and Spark
"Exactly once delivery" depends on the architecture
However, "exactly once delivery" can easily be achieved with
idempotent sinks
HDFS has "truncate" method → exactly once delivery
Spark offers transactional updates → exactly once delivery

"MASTER"

SINK

"MASTER"

ZOOKEEPER

CHECK-
POINTED

STATE

PERSISTENT
SOURCE

AT LEAST ONCE GUARANTEED

SLOW
DOWN!

SLOW
DOWN!

#8INGREDIENT #8:
MONITORING

MONITORING
Don't underestimate what's necessary
You need proper metrics to analyze your application
Business metrics: might not be a by-product
Metrics and failure tolerance?

"MASTER"

SINK

"MASTER"

ZOOKEEPER

CHECK-
POINTED

STATE

PERSISTENT
SOURCE

AT LEAST ONCE GUARANTEED

SLOW
DOWN!

SLOW
DOWN!

ADD SOME SALT

PRODUCTION CHECKS
Regularly, inject some dummy records into your flow
Verify they come out of the pipeline
Measure their latency

TL;DL
Stream Processor: Thoroughly analyze what you need
State Management: Make your job properly store its state
Checkpointing: No data loss on failures
High Availability: No single points of failure! → Zookeeper
Back Pressure: Don't overload the system
Data Quality: Know your "exactly once"
Monitoring: Make sure you always know what's happening
Production Tests: Test if prod system is working as expected

THANK YOU!
QUESTIONS?

 / www.tngtech.com konstantin.gregor@tngtech.com

http://hakim.se/
http://twitter.com/hakimel

