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Who We Are 

•  MapR echnologies   
–  We make a kick-ass platform for big data computing 
–  Support many workloads including Hadoop / Spark / HPC / Other 
–  Extended to allow streams and tables in basic platform 
–  Free for academic research / training 

•  Apache Software Foundation 
–  Culture hub for building open source communities 
–  Shared values around openness for contribution as well as use 
–  Many major projects are part of Apache 
–  Even more minor ones! 
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Basic Outline 

•  Why we should measure distributions 
•  Basic Ideas 
•  How t-digest works 
•  Recent results 
•  Applications 
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Why Is This Practically Important 

•  The novice came to the master and says “something is broken” 
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Why Is This Practically Important 

•  The novice came to the master and says “something is broken” 

•  The master replied “What has changed?” 

•  And the student was enlightened 
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Finding change is key


but what kind?
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Last Night’s Latencies 

•  These are ping latencies from my hotel 

•  Looks pretty good, right? 

•  But what about longer term? 

208.302	
198.571	
185.099	
191.258	
201.392	
214.738	
197.389	
187.749	
201.693	
186.762	
185.296	
186.390	
183.960	
188.060	
190.763	

>	mean(y$t[i])	
[1]	198.6047	
>	sd(y$t[i])	
[1]	71.43965	
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Not So Fast … 

�t(ms)

sample
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This is long-tailed land
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This is long-tailed land


You have to know the 
distribution of values
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�t(ms)
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A single number
is simply not enough
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What We Really Need Here 

•  I want to be able to compute the distribution from any time 
period 

•  From any subset of measurements 
•  With lots of keys and filters 
•  And not a lot of space 
 
•  Basically, any OLAP kind of query 
			select	distribution(x)	from	…	where	…	group	by	y,z	
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Idea 0 – Pre-defined bins 
•  So let’s assume we have bins 

–  Upper, lower bound, constant width 

•  Get a measurement, pick a bin, increment count 

•  Works great if you know the data 
–  And you have limited dynamic range (too many bins) 
–  And the distribution is fixed 

•  Useful, but not general enough 
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Idea 1 – Exponential Bins 

•  Suppose we want relative accuracy in measurement space 
•  Latencies are positive and only matter within a few percent 

–  1.1 ms versus 1.0 ms 
–  1100 ms versus 1000 ms 

•  We can cheat by using floating point representations 
–  Compute bin using magic 
–  Count 
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FloatHistogram 

•  Assume all measurements are in the range  

•  Divide this range into power of 2 sub-ranges 

•  Sub-divide each sub-range evenly with      steps 
–             is typical 

•   Relative error is bounded in measurement space 
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FloatHistogram 

•  Assume all measurements are in the range  

•  Divide this range into power of 2 sub-ranges 

•  Sub-divide each sub-range evenly with      steps 
–             is typical 

•   Relative error is bounded in measurement space 

•  Bin index can be computed using FP representation! 
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Fixed Size Bins 
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Approximate Exponential Bins 
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Non-linear bins are 
better (sometimes)


Still not general enough
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Idea 2 – Fully Adaptive Bins 

•  First intuition – in general, we want accuracy in terms of 
percentile 

•  Second intuition – we want better accuracy at extreme 
quantiles 
–  50%-ile versus 50.1%-ile? 
–  What does 0.1% error even mean for 99.99th percentile 

•  We need bins with small counts near the edges 
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First 1% of data shown.  
Left graph has 100 x 100 sample bins.  
Right graph has ~130bins, variable size 
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The Basic t-digest 

•  Take a bunch of data 
•  Sort it 
•  Group into bins 

–  But make the bins be smaller at the beginning and end 

•  Remember the centroid and count of each bin 

•  That’s a t-digest 
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But Wait, You Need a Bit More 

•  Take a bunch of new data, old t-digest 
•  Sort the data and the old bins together 
•  Group into bins 

–  Note that existing bins have bigger weights 
–  So they might survive … or might clump 

•  Remember the centroid and count of each new bin 

•  That’s an updated t-digest 
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Oh … and Merging 

•  Take a bunch of old t-digests 
•  Sort the bins  
•  Group into mega-bins 

–  Respect the size constraint 

•  Remember the centroid and count of each new bin 

•  That’s a merged t-digest 
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Adaptive non-linear bins 
are good and general


And can be grouped 

and regrouped
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Results 
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Status 

•  Current release 
–  Small accuracy bugs in corner cases 
–  Best overall is still AVLTreeDigest 
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Status 

•  Current release (3.x) 
–  Small accuracy bugs in corner cases 
–  Best overall is still AVLTreeDigest 

•  Upcoming release (4.0) 
–  Better accuracy in pathological cases 
–  Strictly bounded size 
–  No dynamic allocation (with MergingDigest) 
–  Good speed (100ns for MergingDigest, 5ns for FloatHistogram) 
–  Real Soon Now 
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Example Application 
•  The data: 

–  ~ 1 million machines 
–  Even more services 
–  Each producing thousands of measurements per second 

•  Store t-digest for each 5 minute period for each measurement 

•  Want to query any combination of keys, produce t-digest result 
        “what was the distribution of launch times yesterday?” 
        “what about last month?” 
        “in Europe versus in North America versus in Asia?” 
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Collect Data 
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And Transport to Global Analytics 
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With Many Sources 
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What about visualization?
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�t(ms)

Can’t see small count bars 
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Good Results 
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Bad Results – 1% of measurements are 3x bigger 
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Bad Results – 1% of measurements are 3x bigger 
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With Better Vertical Scaling 
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Uniform Bins 
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FloatHistogram Bins 
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With FloatHistogram 
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Original Ping Latency Data 

�t(ms)
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Summary 

•  Single measurements insufficient, need distributions 
•  Uniform binned histograms not good 
•  FloatHistogram for some cases 
•  T-digest for general cases 

•  Upcoming release has super- 
 fast and accurate versions 

•  Good visualization also key 
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Q & A
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T-digest 
•  Or we can talk about small errors in q 

•  Accumulate samples, sort, merge 

•  Merge if k-size < 1 

•  Interpolate using centroids in x 

•  Very good near extremes, no dynamic allocation 
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