
©	2016	AudienceScience	Inc.	

The world wide 60 billion transaction
per day journey

©	2016	AudienceScience	Inc.	

©	2016	AudienceScience	Inc.	

©	2016	AudienceScience	Inc.	

©	2016	AudienceScience	Inc.	

©	2016	AudienceScience	Inc.	

We

•  Ranbir Chawla
–  V.P Engingeering
–  Ranbir.Chawla@audiencescience.com

•  Frank Conrad
–  Chief Architect
–  Frank.Conrad@audiencescience.com

©	2016	AudienceScience	Inc.	

Background

•  AudienceScience provides fully integrated, end to end,
advertising solutions for the world’s largest brand advertisers.

•  AudienceScience receives, processes and responds (in real-
time) to over 80 billion incoming requests a day, in over 42
countries.

•  Our solutions allow advertisers to effectively manage and
leverage their consumer data to produce industry leading ROI
on their advertising spend.

•  Global Distribution of Five Points of Presence to Central DC
•  Where we were

–  20 Billion TPD in 2014

©	2016	AudienceScience	Inc.	

The Challenges of Scale

•  Scaling is in the details
•  We often miss the obvious steps in looking @ the

complex problem
•  Clever design does not solve for bad execution

©	2016	AudienceScience	Inc.	

Chose the right data model

•  What scale you need – allow for parallelism
•  Store the data that you effective can use it
•  How it can handle out layers
•  How add later changes, it is extensible
•  How is data expired / deleted

©	2016	AudienceScience	Inc.	

Chose production oriented architecture

•  To allow scale
–  With parallel (as massive as make sense)
–  Dynamic parallelisms
–  Asynchronous processing
–  Look to latency and throughput
–  Eventual consistency is possible

•  Production oriented
–  Dynamic limiting
–  Allow catch up
–  How to handle unreliable network
–  Uneven / unreliable hardware
–  Think about out layers (latency, data size, cpu consumption), think

was to do with them
–  Monitor, monitor, monitor

©	2016	AudienceScience	Inc.	

Monitoring – How are you scaling today?

•  Chose a monitoring tool set that you can easily script
and version control
–  We leverage nagios in our environment
–  All setup and configuration happens in an automated fashion
–  Bad hardware in large distributed clusters can kill an entire

workflow

•  Functional Monitoring
–  End to End monitoring – injecting known data for known result
–  each component in the pipeline plays a part here
–  Monitor all of your instances – sampling does not work here

©	2016	AudienceScience	Inc.	

Hadoop at the core

•  Our main computational engine is still Hadoop
•  Started with 60 Nodes, now running > 500 Nodes
•  Leverage best practices to scale Map Reduce

–  As much compute as possible in the mapping phase
–  Minimize shuffle data, leverage locality
–  Output files must be in optimal format, sizes etc for the

consumers next in the workflow
–  Put not all nodes in one cluster, have 2 or even more

•  But let them easy to move between
•  No single point of failure, simpler update

©	2016	AudienceScience	Inc.	

Hadoop Tuning

•  Optimize your job in balance between:
–  Mapper/Reducer runtime (good is 5min)
–  Number of mapper / reducers, have shuffle time under control
–  Amount shuffle data
–  Amount and size of output files

•  Focus on not creating extra garbage monitoring the GC
is difficult

•  Make sure that JVM setting is always in UTF-8
•  Enable speculative task execution (but not for S3 writes)
•  tmp space distribute across all drives
•  Create filesystem instance for each data bucket

©	2016	AudienceScience	Inc.	

Leveraging Storm

•  Only use grouping if you really need it
•  If processing time for certain inputs have a large

distribution Storm will have issues. Work to get
consistency

•  minimize cross JVM/Node traffic == minimize shuffling
again!

•  As always not create extra garbage, keep the GC happy

©	2016	AudienceScience	Inc.	

Voldemort as a large scale key store

•  Memory only based stores scale to large sizes
–  Very Stable
–  scales well and is performant
–  But no monitoring what is inside memory

•  read only stores
–  Efficient to produce with MR on scale
–  scales well and is performant
–  Very stable

•  Use newest Voldemort client 1.10, handle failure / edge
cases better

©	2016	AudienceScience	Inc.	

Voldemort Continued

•  Challenge is deploying huge RO stores from MR to
Voldemort cluster
–  Huge impact to page cache and disk IO on download new one
–  Internal solution

•  work with FS and HDFS only
•  not good to control
•  Failure handling, recovery is difficult

–  We use our own solution
•  Leverage cloud

©	2016	AudienceScience	Inc.	

Kafka to feed data from around the world
•  Clusters

–  POD 5 x 6 broker
–  DC 16 broker

•  Hardware
–  Large disk capacity per broker migrating to smaller capacity more

brokers
•  Production

–  Stable (use 0.8.1.1, plan to migrate to 0.9)
–  scales well and is performant
–  Mostly hardware and human related issues
–  Older version have high load to zookeeper

•  Learning
–  17 TB of data is to much per server, in terms of failure recovery
–  Mirror Maker scale need a lot of tuning

•  Compression cost huge CPU
•  A lot of instances/parallel connection to get throughput with latency

©	2016	AudienceScience	Inc.	

Scaling Cassandra

•  Cross Data Center replication needs solid networking
and very focused deployment
–  Repairs become a challenge

•  Optimize your data model to avoid deletes
•  Leverage native C* TTL as much as possible
•  C* works will for ‘time-series’ oriented data, leverage

time aspects of your data model – TTL again
•  In the end avoid un-necessary clean up jobs
•  Key/Value mapping if the value is of similar size to the

key C* is inefficient and needs specific tuning.
•  On SSD, make sure TRIM works

©	2016	AudienceScience	Inc.	

Scaling Clusters and Micro-Services

•  We use Mesos/Marathon on Bare Metal and in AWS
•  Deploy with gradual scale vs. single massive deployment
•  Local docker registry

–  Need good network, IO, to deploy fast

•  Cleanup
–  Unused images
–  Old instance data
–  Runtime log files

•  Minimize Docker images, but keep them debugable (can
install tools on demand)

©	2016	AudienceScience	Inc.	

Moving to the Cloud

•  Focused on handling variable, ‘elastic’ data
•  Challenges when moving off of fixed hardware onto

someone else’s network
•  Object Store vs. HDFS

–  If using Object Stores use them only @ the start and end
–  Hash S3 Object Store data for efficient writing
–  HDFS for temporary storage
–  Consider HDFS full time and add ‘compute only nodes’ to scale

up

•  Leveraging Qubole for scalable Hadoop/Spark

©	2016	AudienceScience	Inc.	

Scaling Time Series oriented data

•  Leveraged C* and wide tables
•  Custom Carbon Ingestion Module
•  Uses Spark to query C* and perform time series math
•  Custom Java Micro Service to ‘mock’ Graphite API
•  Next Steps

