
Apache Lucene 6
What’s coming next?

Uwe Schindler
Apache Software Foundation | SD DataSolutions GmbH | PANGAEA

@thetaph1 ∙ uschindler@apache.org

My Background
• Committer and PMC member of Apache Lucene and Solr - main

focus is on development of Lucene Core.
• Implemented fast numerical search and maintaining the new

attribute-based text analysis API. Well known as Generics and
Sophisticated Backwards Compatibility Policeman.

• Elasticsearch lover.
• Working as consultant and software architect at SD DataSolutions

GmbH in Bremen, Germany.
• Maintaining PANGAEA (Publishing Network for Geoscientific &

Environmental Data) where I implemented the portal's geo-spatial
retrieval functions with Apache Lucene Core and Elasticsearch.

ON THE WAY TO

History

6…

Lucene 5: New data safety features

Checksums in all index files

– Checksums are validated on each merge!

– Can easily be validated during Solr‘s /
Elasticsearch‘s replication!

B
a

ckg
ro

u
n

d
 im

a
g

e: M
aksim

 K
ab

ako
u

, Sh
u

ttersto
ck

Lucene 5: New data safety features

Unique per segment ID

– ensures that the reader really sees the
segment mentioned in the commit

– prevents bugs caused by failures in replication
(e.g., duplicate segment file names)

Lucene 5: New index safety features

Cutover to NIO.2

(Java 7, JSR 203)

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

*) https://github.com/policeman-tools/forbidden-apis

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

• Atomic rename to publish commit
– no more segments.gen

– fsync() on directory metadata

*) https://github.com/policeman-tools/forbidden-apis

Lucene 5: Overhaul of Codec API

• Pull APIs throughout Codec components

– E.g., PostingsFormat

• Norms are now handled by separate codec
component

Lucene 5: Index merging

Lucene 5: Index merging

• Linux: Detection if index is on SSD
– Better default merging settings
– Other operating systems assume spinning disks (no

change)

Lucene 5: Index merging

• Linux: Detection if index is on SSD
– Better default merging settings
– Other operating systems assume spinning disks (no

change)

• Merge Scheduler: Auto Throttling
– Automatically controls I/O rates based on

indexing/merging rate
– Stalling under high load is more unlikely!

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

_cz(5.0.0):C8330469: 28MB

postings [...]: 5.2MB

...

field 'latitude' [...]: 678.5KB

term index [FST(nodes=6679, ...)]: 678.3KB

Lucene 5: CustomAnalyzer

• Freely configurable Analyzer
• Based on SPI framework for Tokenizers,

TokenFilters and CharFilters
• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)
– Same config options like Apache Solr

• Builder API

Lucene 5: CustomAnalyzer

• Freely configurable Analyzer
• Based on SPI framework for Tokenizers,

TokenFilters and CharFilters
• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)
– Same config options like Apache Solr

• Builder API

Analyzer ana =

CustomAnalyzer.builder(Paths.get("/path/to/config"))

.withTokenizer(StandardTokenizerFactory.class)

.addTokenFilter(StandardFilterFactory.class)

.addTokenFilter(LowerCaseFilterFactory.class)

.addTokenFilter(StopFilterFactory.class,

"ignoreCase", "false",

"words", "stopwords.txt",

"format", "wordset")

.build();

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core

Im
a

g
e cred

its:Sim
o

n
 W

illn
au

e
r / Trifo

rk

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core
• Use DocValues fields and APIs!

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core
• Use DocValues fields and APIs!

• Not completely gone:
– UninvertingReader in misc/ module emulates

DocValues by uninverting index
– UninvertingReader allows to merge to a new index,

automatically adding DocValues!

Lucene 5.1: Filter => Query

Lucene 5.1: Filter => Query

• Removal of Filters
– new Occur.FILTER in BooleanQuery
– Removed some duplicate classes already:
BooleanFilter, Term(s)Filter,
NumericRangeFilter…

Lucene 5.1: Filter => Query

• Removal of Filters
– new Occur.FILTER in BooleanQuery
– Removed some duplicate classes already:
BooleanFilter, Term(s)Filter,
NumericRangeFilter…

Lucene 5.1: Filter => Query

• Removal of Filters
– new Occur.FILTER in BooleanQuery
– Removed some duplicate classes already:
BooleanFilter, Term(s)Filter,
NumericRangeFilter…

• Backwards compatibility:
– Filter extends Query
– query API calls getDocIdSet
– returns 0 as score (boost ignored)

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

• Used by PhraseQuery:

– Cheap part is the „matching“ of terms
(conjunction)

– Expensive part is loading & checking positions

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

• Used by PhraseQuery:

– Cheap part is the „matching“ of terms
(conjunction)

– Expensive part is loading & checking positions

• Allows to share common code

Lucene 5.2: Span Queries

• Complete rewrite

Lucene 5.2: Span Queries

• Complete rewrite

• Uses Lucene 5.1 "two phase iterators"

• Shares code with BooleanQuery
(conjunction / disjunction)

6

6

New features!

Lucene Point Values
(also known as dimensional values)

• Successor of NumericField
(Solr: TrieField)

• Multidimensional (e.g. geographic coordinates): 8
dims

• Up to 128 bits / 16 bytes per value (IPv6 range
queries are now possible)

See: https://www.elastic.co/blog/lucene-points-6.0

https://www.elastic.co/blog/lucene-points-6.0

Legacy Numeric Range Queries

421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

Block k-d-Trees

Very similar approach like NumericField!

– Just more dynamic

– Adapts dynamically depending on number of
unique values!

Comparison (1D)

D
iagram

: M
ike M

cC
an

d
less

Comparison (2D)

D
iagram

: M
ike M

cC
an

d
less

Lucene 6: Java Version

Lucene 6: Java Version

• Java 8 is minimum requirement!

Lucene 6: Java Version

• Java 8 is minimum requirement!

• lucene-core.jar only uses compact1
profile

Lucene 6: Java Version

• Java 8 is minimum requirement!

• lucene-core.jar only uses compact1
profile

• All other (Lucene) parts use compact2 profile

Lucene 6: Java 9 ?

Lucene 6: Java 9 ?

• Compatibility with Java 9 module system
restrictions

Lucene 6: Java 9 ?

• Compatibility with Java 9 module system
restrictions

• Unicode 8: 💩👮🐸
– with ICU or Java 9

Lucene 6: Java 9 ?

• Compatibility with Java 9 module system
restrictions

• Unicode 8: 💩👮🐸
– with ICU or Java 9

• Nightly tests with early access builds
– currently Java 9 build 121

Lucene 6: Okapi BM25

Lucene 6: Okapi BM25

It’s now the default!

BTW: What‘s Okapi BM25 ???

BTW: What‘s Okapi BM25 ???

• BM25 is a bag-of-words retrieval function

BTW: What‘s Okapi BM25 ???

• BM25 is a bag-of-words retrieval function

• probabilistic model instead vector space
model

BTW: What‘s Okapi BM25 ???

• BM25 is a bag-of-words retrieval function

• probabilistic model instead vector space
model

• function of TF and IDF

BTW: What‘s Okapi BM25 ???

BTW: What‘s Okapi BM25 ???

• TF is not unbounded: saturation!
– Documents with high term frequency don‘t

increase score too much

BTW: What‘s Okapi BM25 ???

• TF is not unbounded: saturation!
– Documents with high term frequency don‘t

increase score too much

BTW: What‘s Okapi BM25 ???

• TF is not unbounded: saturation!
– Documents with high term frequency don‘t

increase score too much

• Average document length
– Used with tuning factor to change significance of

repeated terms

BTW: What‘s Okapi BM25 ???

• TF is not unbounded: saturation!
– Documents with high term frequency don‘t

increase score too much

• Average document length
– Used with tuning factor to change significance of

repeated terms

• IDF similar to standard TF-IDF

Watch talk by Britta Weber
Tomorrow, 14:30 to 15:10, Frannz Club

Lucene 6: Query API

Lucene 6: Query API
• Filter completely gone!

Lucene 6: Query API
• Filter completely gone!

Lucene 6: Query API
• Filter completely gone!

Lucene 6: Query API
• Filter completely gone!

• Query unmodifiable

Lucene 6: Query API
• Filter completely gone!

• Query unmodifiable

Lucene 6: Query API
• Filter completely gone!

• Query unmodifiable

• Query boost removed

Lucene 6: Query API
• Filter completely gone!

• Query unmodifiable

• Query boost removed

– new BoostQuery

Lucene 6: "Anti-Feature"

Removal of Lucene 4 index
support!

Lucene 6: "Anti-Feature"

Removal of Lucene 4 index
support!

• Get rid of old index segments:
IndexUpgrader in latest Lucene 5
release helps!

• Elasticsearch 5 has automatic index
upgrader already implemented / Solr
users have to manually do this

What‘s new

Apache Solr 6

New release bundled
with Lucene 6 release

SQL Parser and analytics framework
(streaming API)

SQL Parser

• Requires Solr Cloud setup

• New Streaming API behind the scenes

– Introduced in Solr 5.1

• Presto Parser (Facebook)

• Parallelized across multiple Solr nodes

SQL Parser

Supported operators

– SELECT (fields, functions, aggregations)

– FROM (Solr core / index)

– WHERE (Solr query parser)

– GROUP BY (Solr facets/aggregations)

– ORDER BY (Solr sorting)

SQL Parser

Supported operators

– SELECT (fields, functions, aggregations)

– FROM (Solr core / index)

– WHERE (Solr query parser)

– GROUP BY (Solr facets/aggregations)

– ORDER BY (Solr sorting)

SQL Parser

Supported operators

– SELECT (fields, functions, aggregations)

– FROM (Solr core / index)

– WHERE (Solr query parser)

– GROUP BY (Solr facets/aggregations)

– ORDER BY (Solr sorting)

Watch talk by Shalin Mangar!
next after, Maschinenhaus

Cross Data Center Replication (CDCR)

• Accommodate two or more data
centers

• Accommodate limited band-with
cross-datacenter connections

• Minimize coupling between peer
clusters to increase reliability

Solr 6: More features

Solr 6: More features

• GraphQuery for graph traversal

Solr 6: More features

• GraphQuery for graph traversal

• Filters on realtime get

Solr 6: More features

• GraphQuery for graph traversal

• Filters on realtime get

• DocValues fields return as stored

Solr 6: More features

• GraphQuery for graph traversal

• Filters on realtime get

• DocValues fields return as stored

• Date support now fully ISO-8601 conformant

– Backed by Java 8’s java.time API

– Warning: reindex required for very early dates

Dimensional / Point Values

Delayed until version 6.2

421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

Dimensional / Point Values

Delayed until version 6.2

• Community still discusses:
– Reindex requirement if old numeric fields need to be

upgraded to point values
– Requirement for DocValues (no uninverting possible!)

421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

Dimensional / Point Values

Delayed until version 6.2

• Community still discusses:
– Reindex requirement if old numeric fields need to be

upgraded to point values
– Requirement for DocValues (no uninverting possible!)

• For now it still uses deprecated
LegacyNumericField as backend for Solr’s
TrieField

421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

THANK YOU!
Questions?

SD DataSolutions GmbH
Wätjenstr. 49

28213 Bremen, Germany
+49 421 40889785-0

http://www.sd-datasolutions.de

http://www.sd-datasolutions.de/

